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ABSTRACT OF THE THESIS

On Motion Parameterizations in Image Sequences from Fixed Viewpoints

by

Manfred Georg

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2010

Research Advisor: Professor Robert Pless

This dissertation addresses the problem of parameterizing object motion within a set

of images taken with a stationary camera. We develop data-driven methods across

all image scales: characterizing motion observed at the scale of individual pixels,

along extended structures such as roads, and whole image deformations such as lungs

deforming over time. The primary contributions include (a) fundamental studies of

the relationship between spatio-temporal image derivatives accumulated at a pixel,

and the object motions at that pixel, (b) data driven approaches to parameterize

breath motion and reconstruct lung CT data volumes, and (c) defining and offering

initial results for a new class of Partially Unsupervised Manifold Learning (PUML)

problems, which often arise in medical imagery.

Specifically, we create energy functions for measuring how consistent a given velocity

vector is with observed spatio-temporal image derivatives. These energy functions are

used to fit parametric snake models to roads using velocity constraints. We create

an automatic data-driven technique for finding the breath phase of lung CT scans
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which is able to replace external belt measurements currently in use clinically. This

approach is extended to automatically create a full deformation model of a CT lung

volume during breathing or heart MRI during breathing and heartbeat. Additionally,

motivated by real use cases, we address a scenario in which a dataset is collected along

with meta-data which describes some, but not all, aspects of the dataset. We create

an embedding which displays the remaining variability in a dataset after accounting

for variability related to the meta-data.
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Chapter 1

Introduction

The intelligent analysis of image and video sequences has become an important part of

an increasing number of applications. For example, portable cameras have integrated

face detectors, photo archiving tools make use of object recognition and image search,

and medical image analysis requires segmentation and registration methods.

With increasing processing power, many methods which have been used previously

only on single images can now be applied to entire video sequences. Large amounts

of video data are collected for the analysis of motion patterns. Surveillance, anomaly

detection, target tracking, and action recognition are all examples of applications

which use video data. In medical imaging, methods for determining tissue motion are

both becoming integrated into patient diagnosis and treatment systems, and used for

research purposes.

Figure 1.1: Left: One frame from a video of traffic moving over roads. Middle: A
vector field extracted from the motion patterns observed at each pixel over the length
of the video. Right: A parameterization of the motion patterns in the scene using
snakes.

1
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Figure 1.2: Left: Multiple images of a part of the lung are acquired and breath phase
is assigned to each acquisition through analysis of the data volume. Right: A full
4D CT lung model is created which captures both the spatial appearance of the lung
and the dynamics of how tissue moves during breathing.

A large number of applications make use of a stationary camera which observes the

same scene over a long period of time. This simplifies the problem of scene un-

derstanding, since, in this setting, algorithms do not need to compensate for the

movement of the camera. This allows for more powerful and detailed analysis than

in the general case of a moving camera. Furthermore, some questions can only be

answered by observing a scene for a long period of time. This dissertation will address

several different scenarios in which stationary cameras observe a scene with moving

objects of interest. In each problem domain we will seek to understand the motion

within the scene.

We have organized each chapter as a self contained unit with its own related work,

technical contributions, and evaluation sections. Chapter 2 studies video sequences

from stationary cameras looking at consistent patterns of motion, such as traffic over

roads. We investigate different ways of extracting a motion vector field from summary

statistics of motion at each pixel. We extend the use of these summary statistics to

parameterize the motion within the scene using snake models. Figure 1.1 shows an

example frame from a video sequence, an extracted motion vector field, and the final

parameterization of motion within the scene.

Chapter 3 studies anatomical tissue motion within medical images, particularly lung

tissue motion in 4D CT lung datasets. Our datasets are essentially image sequences

from a stationary camera looking at a periodic action, either heartbeat or breathing.

To create a coherent model of the tissue volume, the breath or heartbeat phase must

be determined for each image acquisition. Once the phase of each acquisition is found,

a full deformation model can be constructed to model the entire tissue volume as it

2
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Short Term Variation (Wing Flap): 0.32 seconds

Long Term Variation (Body Pose): 20 seconds

Figure 1.3: Top: Images of a kestrel wing flap cycle, this is a short term variation
which we are able to parameterize using PUML methods. Bottom: Images showing
the long term variations in rest wing position, tail variation, and general body pose
which we are able to automatically ignore, given the timestamps of frames in the
video sequence.

changes during physiological activity. Figure 1.2 shows CT image acquisitions from a

lung patient, which are ordered by breath phase and then synthesized into a complete

motion model of the lung.

Motivated by our work in medical imaging, where extra meta-data such as breath

phase is frequently available from an external data source, in chapter 4, we investigate

the more theoretical question of how to create improved embeddings of datasets when

information partially explaining the variation in the dataset is provided. We formulate

the problem of Partially Unsupervised Manifold Learning (PUML) in which we seek

to embed a high dimensional dataset into a low dimensional space, preserving as

much structure as possible and simultaneously ensuring that the output embedding

is statistically independent of a given known parameter. Ensuring independence of the

output from the known parameter means that each new parameter provides additional

information about the causes of variation in the dataset. Our methods will allow us

to use the timestamps of frames in a video to ignore long term variations in a dataset

and more effectively parameterize short term variations. For example, in figure 1.3

we will automatically parameterize the short term variation of wing flaps and ignore

the long term variations in rest body position, tail position, and wing positions.

3
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Contributions: We list the 5 main contributions within this dissertation and give

a brief summary of each.

1. A general study of the properties of spatio-temporal derivatives accu-

mulated over time at a single pixel in a video. We develop and evaluate

3 different energy functions for determining the consistency of a velocity vector

with a spatio-temporal structure tensor. We also analyze the temporal equiv-

alent to the aperture problem, and find the standard use of total least squares

is less appropriate for estimating motion in this setting. This contribution is

presented in chapter 2.

2. An explicit derivation of energy functions for fitting snake models by

velocity to spatio-temporal derivatives. This allows for stable open-ended

snakes, a configuration which is not possible using traditional snake models.

We derive analytical derivatives of the snake energy functions, enabling efficient

optimization algorithms. This contribution is presented in chapter 2.

3. A novel, data driven method of computing the breath phase of data

acquisitions in a 4D CT lung dataset. We demonstrate the ability to

produce smoother reconstructions than the industry standard method which

additionally requires measurements from an external belt. This contribution is

presented in chapter 3.

4. A novel algorithm for modeling deformable tissue motion. We model

tissue using a reference volume and deformation map and are able to simul-

taneously solve for the object state, deformation map, and reference volume.

We are able to improve the smoothness of 4D CT lung reconstructions while

also providing a motion model of tissue within the lung during breathing. This

contribution is presented in chapter 3.

5. A formulation and several solution approaches to a new problem,

Partially Unsupervised Manifold Learning (PUML). We give automated

algorithms to ignore long term trends in datasets and improve the parameter-

ization of short term trends. We are able to embed manifolds while ignoring

variation in the dataset due to cyclic known parameters. This contribution is

presented in chapter 4.

4
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Chapter 2

Flow Constraints and Fitting

Snakes by Velocity

Abstract

We consider the problem of estimating consistent motion patterns from video data

using spatio-temporal image intensity derivatives. We explore the failure modes unique

to motion estimation using spatio-temporal derivatives through time. We illustrate

different ways to use the spatio-temporal structure tensor to define energy functions

over flow vectors which express how consistent those vectors are with observed image

derivatives. We show that unlike in the standard optic flow problem, it is a poor

choice to use total least squares to solve for motion in a time series. We define

novel energy functions to fit B-Spline snakes to roads by aligning their direction and

speed to be maximally consistent with the spatio-temporal derivatives. Due to the

constraint on the derivative of the snake, this produces stable, open-ended snakes,

without specifying the location of endpoints. This completes a system to make a snake

based parameterization of the position, direction, speed, and width of roads.

2.1 Introduction

For many video applications, data is acquired in order to understand the motion pat-

terns within the scene. In video surveillance and video-microscopy, video is frequently

acquired from a stationary or georegistered camera, so motion patterns continue to
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affect the same pixels the same way over long time periods. This chapter explores

ways to capture and parameterize this motion.

We focus especially on capturing the motion observed by each pixel over time, because

this low-level cue is applicable to many problem domains: capturing consistent motion

of cars on roads, consistent motion of people in malls, and consistent motion of blood

cells within blood vessels.

The first part of the chapter deals with estimating optic flow from spatio-temporal

summary statistics accumulated over time. This is different from the more typical

optic flow problem in which the motion of objects between a pair of consecutive images

is computed. In either case, a basic tool used is the optic flow constraint, which relates

the spatio-temporal image derivatives to object motion in the image. In the spatial

case, spatio-temporal derivatives are collected over a local region around a pixel.

However, when watching a motion pattern which remains consistent over time, we

can consider the spatio-temporal image derivatives at one pixel location throughout

the entire video sequence. This allows us to constrain the motion we expect in the

scene based on the entire video sequence.

Our analysis is based on characterizing the spatio-temporal structure tensor, which

is the covariance matrix of the spatio-temporal intensity derivatives observed at a

particular pixel over time. This summary statistic can be accumulated in real time.

In the context of stationary motion patterns, we characterize the failure modes of

several standard methods to estimate the optic flow from the structure tensor.

While much of the first part of this chapter highlights challenges, ambiguities and

failure modes of using the structure tensor to represent motion, it captures and sum-

marizes important information about observed motions. In particular, the structure

tensor allows the computation of several energy functions which can be used to score

how consistent a motion vector is with observed data. Classical flow estimates includ-

ing least squares, total least squares, and normal flow are solutions which minimize

the error function defined on the structure tensor. However, retaining the complete

information allows applications to integrate all of the information within the tensor

into energy functions whose minimization defines global motion patterns.
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Figure 2.1: We seek to parametrize roads from video, such as the examples shown on
the top. In the middle row, real-time accumulation of spatio-temporal derivatives cap-
tures both the best fitting motion direction (red arrows) and confidence values (black
is more confident). On the bottom, results from a new algorithm which parameterizes
roads by speed, direction and width are shown.
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In this vein, in the second part of the chapter, we have created parametric snake

models. Unlike standard snake models, the derivative of the snake is interpreted as

a velocity and matched for consistency directly with the structure tensor using these

energy functions. This produces open-ended snakes which are stable and unanchored

at their endpoints. Using these snakes, we are able to automatically parameterize

roads using video data of traffic from stationary or georegistered cameras. Figure 2.1

shows scenes from two video sequences from stationary cameras looking at traffic

in roads. The second row in the figure shows the directions of consistent motion

computed by fitting vectors to the structure tensor extracted from the video in real

time. The third row shows results for the second part of this chapter in which we

parameterize roads by their direction, speed, and width.

The rest of the chapter contains the following sections. Section 2.2 gives an overview

of related work both in spatio-temporal derivatives and snakes. Section 2.3 gives

a summary of spatio-temporal derivatives. Section 2.4 shows the spatio-temporal

derivatives created by a moving object in simple scenarios. Section 2.5 develops 3

energy functions which can be used to match a velocity vector to a spatio-temporal

derivative tensor. Section 2.6 analyzes the failure modes of the energy functions

and shows results on both synthetic data and a traffic scene. Section 2.7 begins

the second part of the chapter, in which parametric snake models are fit to the

spatio-temporal derivatives, by introducing traditional cubic B-Spline snake models.

Section 2.8 introduces our specialized energy functions which we use to fit snakes by

velocity. Section 2.9 computes the analytical derivative of the snake energy functions.

Section 2.10 presents the optimization algorithm used to fit the snake models. Finally,

section 2.11 shows results of fitting snake models and explores the effects of changing

scaling parameters in the algorithm.

2.2 Related Work

We give related work in three areas: classic optic flow and spatio-temporal derivative

statistics, road delineation and snake models, and technical background specific to

our use of snakes.
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2.2.1 Optic Flow and Spatio-temporal Derivatives

Optic flow is among the most fundamental problems in computer vision [42], and for

the classic problem there are methodologies and datasets for evaluation [5], fast varia-

tional solutions [14], and slow algorithms which elegantly relax standard assumptions

of constant lighting or camera blur parameters [79].

Prior work focused on capturing spatio-temporal statistics at a pixel over time is tar-

geted at motion anomaly detection [69], and motion in crowded and busy scenes [48].

There has also been work on detecting roads and motion patterns [68, 100]. Other

work has captured different statistics of local motion such as distributions of optic flow

vectors [61, 62], and used them for background subtraction and anomaly detection.

The use of total least squares [45] in the solution for optic flow originated as a way to

reduce bias for least squares flow estimates from noisy infrared image data [93], and

was also discovered to remove bias in vehicle tracking applications [64]. However, to-

tal least squares is only unbiased when the noise corrupting the x, y, and t-derivatives

is i.i.d., and there exists evidence from computational modeling of human optic illu-

sions [30, 31] that suggest that there remains a bias in natural conditions.

2.2.2 Road Delineation and Snake Models

Traditional methods of road delineation are based solely on the appearance of roads.

Early algorithms such as [63, 83] labeled pixels as being either roads or background

by thresholding their intensities. Many improvements have been proposed to identify

line segments in satellite imagery with heuristic-based line detectors [32, 98], and the

Hough transform [10]. These methods work best in areas where there is minimal

variation in road appearance.

Some newer approaches to road delineation are based on Active Contours, an algo-

rithm originally introduced by Kass et al . [46] and popularized with the name snakes.

Snakes provide a framework for segmentation which aims to balance global smooth-

ness constraints and localized fitting to image features. Marikhu et al . [57] utilize

higher order active contours [72] for road extraction from static satellite imagery.
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However, like most previous work, their methods are based solely on road appearance

and fail in the presence of occlusions and shadows.

There have been several methods for refining image based energy functions for im-

proved snake performance. Gradient vector flow is a technique used to improve con-

vergence of snakes to concave areas by propagating gradients to parts distant from

the concave area [101]. Another technique replaces the edge energy function used in

fitting a snake by a statistically based region energy function [1].

Non-parametric techniques such as level sets and parameterization free snakes have

also been explored [11, 67]. These techniques are generally aimed towards segmenting

closed regions, and are naturally able to accommodate topological changes. However,

they are not well suited to delineating roads, which are naturally open-ended. There

are, however, extensions which define the curve implicitly as the centerline of a level

set, allowing the extraction of long thin structures [7].

Particular problems arise when using free-floating open-ended snakes due to the ex-

tra freedom of movement the endpoints have, generally resulting in a zero-length,

trivial snake being the minimum of the energy function. In [16], networks of snakes

were created and jointly optimized using the same framework as traditional snakes;

however, the network endpoints were constrained to be fixed anchor points or to be

along the boundary of the image. One of the advantages to the approach we give in

section 2.8 is that the velocity of the snake parameterization is constrained to match

the estimated velocity of the underlying motion, removing the preference for a trivial,

zero length snake.

Melonakos et al . [59] uses Finsler Metrics to create an energy function which forces

the snakes orientation to fit known orientations within the image [4]. These snakes

have directional cost functions which make it much cheaper to align along a road

in the direction of travel. They illustrate their methods to segment road imagery.

We view our work as addressing two key limitations of this previous work. First,

although Melonakos et al . optimize snakes which are not closed curves, these snakes

have fixed endpoints. In contrast, we allow the endpoints of the snake to move freely.

Additionally, the “directional data” used in [59] is not derived from motion; rather,

it is artificially generated by fitting a static image template along roads. In contrast,

we use the accumulation of spatio-temporal image derivatives to define a constraint
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on the speed of our snakes. This gives a different kind of underlying data that more

specifically exploits long term observations of motion patterns.

2.2.3 Technical Background Specific to Our Approach

We will consider snakes that dynamically fit to the width of a road. Fitting a snake

to a structure with width can be done using multiple snakes which are connected

with constraints [90, 103]. We follow a more direct approach where the thickness

of the snake is directly estimated. The convergence properties of such snakes have

previously been characterized in [20].

Adding width to our snakes creates a sort of motion segmentation algorithm. In

general, motion segmentation starts either with optic flow computed at each frame

using spatial constraints [3, 43, 54, 95] or complete trajectory data [94]. Segmentation

techniques are then applied to the directional data. In [43] a vector-aware similarity

measure and a hierarchical clustering algorithm is used. The Lagrangian Coherent

Structures of a vector flow are found in [3] to produce a segmentation. Hierarchical

Dirichlet Processes have been used both on low level motion event descriptions [95]

and full trajectory data [94] to create semantic regions. In [54] event descriptors

which include motion computed through optic flow are created and used to segment

the scene and create behavior models using co-occurrence of events. Our method

differs from motion segmentation in that it is tailored towards long thin segments

(representing roads) and that it directly produces a parametric model of entire roads.

Furthermore, not all motion segmentation methods are able to process sparse motion

which is only seen in some frames of the video. Additionally, our method only requires

summary statistics of the scene which are easy to compute and require little memory.
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2.3 Background on Spatio-temporal Derivatives

The optic flow constraint equation [42], relates the x, y, t derivatives of image intensity

(Ix, Iy, It) of an image sequence to the apparent motion of objects in the image (u, v):

Ixu+ Iyv + It = 0 (2.1)

In our applications we compute the image derivatives using blurred pixel differences

in the image at each pixel location. The blurring is necessary, since objects move

multiple pixels between frames. The optic flow constraint equation is based on the

first order Taylor series expansion which assumes the intensity change at a pixel is

linearly correlated with the magnitude of the motion. Figure 2.2 shows examples

of each derivative for a particular frame of the video. As written, the equation is

ill-posed: spatio-temporal derivatives (Ix, Iy, It) are estimated from image data, but

there is only one equation and two unknown variables (u, v). Commonly, there is an

assumption that the flow vectors (u, v) are constant in a region, or varying slowly over

the image. Each of these assumptions can be used to provide additional constraints.

We are interested in the case where all objects which move over a pixel have similar

motion, (u, v) such as occurs for traffic traveling over a road or blood cells in a vas-

cular system. This allows us to constrain equation 2.1 by collecting spatio-temporal

derivatives over time instead of over space. In order to avoid including the spatial

gradients of the background in the summary statistics of motion, we ignore frames

where there is no object moving over the pixel and It is close to 0. Thus, at a par-

ticular pixel, we capture image measurements as a data cloud in the form shown in

figure 2.3, with the blank area in the middle of the data volume showing the band

around It = 0 where we do not include data due to a lack of motion.

2.4 Intensity Gradients of Moving Objects

When an object moves through a scene it causes characteristic gradient changes.

Consider the simple scenario of a dark object with sigmoidally blurred edges moving

through an image at constant speed. In figure 2.4 we measure the changes in image
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Figure 2.2: Examples of spatio-temporal derivatives computed for the image sequence
shown in the upper left.

Figure 2.3: Two views of spatio-temporal derivative data, at a single pixel, displayed
in the Ix, Iy, It cube. The area around It = 0 has been filtered out, since it likely
corresponds to the background state of no motion.
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Figure 2.4: A round object is moved through a scene (top). The induced spatio-
temporal derivatives are measured at two pixels, one directly in the path of the
object (bottom right), the other slightly below the path of the object (bottom left).
The plane drawn corresponds to the optic flow constraint and the known motion of
the object.
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intensity at a point over which the object traverses. The passing of the object induces

a curve through spatio-temporal derivative space which starts and ends at the point

(0, 0, 0). The equation for the optic flow constraint, when u and v are fixed, define a

plane of allowable values for the vector (Ix, Iy, It).

Ixu+ Iyv + It = 0 (2.2)

Values of Ix, Iy, It which are consistent with the motion (u, v) must reside within this

plane. In figure 2.4 it can be seen that the constraint plane cuts through all the data

points.

At the red pixel in figure 2.4, the observed gradients over time follow a cycle, first

all three of Ix, Iy, It are increasing; but, when the dark object passes, the observed

pixel Ix and It both change signs, while Iy does not. This traces out a heart shaped

curve that spans the optic flow constraint plane. At the green pixel in the figure, the

gradients are always completely horizontal as they pass over the point; therefore, Iy is

always zero and all gradients lie on a line. In this situation, any optic flow constraint

plane which goes through this line will realistically explain the data. Therefore, the

data might have been created by a slow moving object moving directly right or a faster

moving object moving diagonally up and right (or down and right). This ambiguity

is the temporal version of the aperture problem. Usually this situation only arises in

the middle of a lane of traffic where the gradients are predominantly, exactly in the

direction of motion. We use this fact to motivate the normal flow energy function in

section 2.5.

We now consider background gradients. Although unrealistic, consider the case of an

object which is additive with the background (figure 2.5(a,b)).

(Ix −Bx)u+ (Iy −By)v + It = 0 (2.3)

Ix is the object intensity gradient and Bx is the intensity gradient of the background.

This equation describes a displaced plane through the point (Bx, By, 0), the back-

ground gradient of the pixel. Now consider the more realistic scenario of an opaque

object. If the object completely occludes the background, the background gradient

is irrelevant and the spatio-temporal derivatives reside on the optic flow constraint
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(a) Additive: No Background Gradient (b) Additive: Background Gradient

(c) Opaque: No Background Gradient (d) Opaque: Background Gradient

Figure 2.5: A curve is traced out in spatio-temporal derivative space by the passing
of an object centered above the position of the pixel (the same distance as the object
passes above the red circle in figure 2.4). (a) An additive object passes over a pixel
which does not have any background gradient. (b) An additive object passes over a
pixel with a background gradient in the direction of travel. Notice that the entire
curve is shifted left (and is entirely under the ideal constraint plane). (c) An opaque
object passes over a pixel with no background gradient, in this scenario the curve
is identical to the case for an additive object. (d) An opaque object passes over a
pixel with a background gradient in the direction of travel. Unlike the additive case,
the spatio-temporal derivatives start at the location of the background gradient but
then move into the optic flow constraint plane as the object completely occludes the
background, tracing out a complicated 3 dimensional curve.
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plane thourgh (0, 0, 0). However, the computation of smooth image derivatives in-

volves blurring the image features with a Gaussian. This means that when the object

is far away the blurring creates something akin to an additive object, while when the

object is directly over the background it is completely occluding it. In figure 2.5(d)

we see the effect of an opaque object moving over a gradient. The curve starts in

the displaced plane around (Bx, By, 0) in the additive model. However, as the ob-

ject moves through the image, the curve transitions into a non-displaced plane and

then, when the object passes, it moves back to the displaced plane of the additive

model. The object, therefore, traces out a complex three dimensional curve which is

not well modeled by the optic flow constraint plane. Although the same reasoning

can be applied to any background gradient, when the gradient lies in the constraint

plane (because it is orthogonal to the direction of travel) it does not affect the motion

estimate, since the entire curve remains within the optic flow constraint plane even

when displaced. We explicitly consider the errors caused by background gradients in

section 2.6.

2.5 Velocity Energy Functions

Using image data to solve for an optic flow vector is a long standing problem within

computer vision. However, instead of making a hard decision on the optic flow at a

location and then using that to infer larger scale motion patterns, it is advantageous

to use the spatio-temporal structure tensor directly. To this end, we define an energy

function which gives a score of how consistent a particular optic flow is with the

underlying image data. Often the image data is consistent with many flow vectors, or

inconsistent with all flow vectors. This flexibility in scoring flow vectors is especially

important for algorithms which are working on trade-offs between smoothness of a

flow field and consistency of each flow estimate with the image data.
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To begin constructing an energy function, we define the complete spatio-temporal

derivative matrix M at a particular pixel.

M(x, y) =


Ix(x, y, 1) Iy(x, y, 1) It(x, y, 1)

Ix(x, y, 2) Iy(x, y, 2) It(x, y, 2)
...

...
...

 (2.4)

When constructing our energy functions, we will only require the spatio-temporal

structure tensor H.

H(x, y) = M(x, y)TM(x, y) =

∑
∀t

Ix(x, y, t)
2

∑
∀t

Ix(x, y, t)Iy(x, y, t)
∑
∀t

Ix(x, y, t)It(x, y, t)

∑
∀t

Ix(x, y, t)Iy(x, y, t)
∑
∀t

Iy(x, y, t)
2

∑
∀t

Iy(x, y, t)It(x, y, t)

∑
∀t

Ix(x, y, t)It(x, y, t)
∑
∀t

Iy(x, y, t)It(x, y, t)
∑
∀t

It(x, y, t)
2


(2.5)

In this equation, H and M depend on the pixel location (x, y) and the summations

are over all frames. Note that the structure tensor H is a 3 by 3 symmetric matrix

at each pixel, no matter how many frames are in a video. Therefore, we only need

to maintain 6 numbers per pixel, and those numbers can easily be updated as more

frames of the video are observed. To visualize these matrices, consider figure 2.3: the

matrix M contains every point in the point cloud (as a row), while H captures the

covariance matrix describing the zero-mean Gaussian distribution which best models

the point cloud. Figure 2.6 shows the values of the matrix H for each pixel. The

upper left hand image is a value of
∑
∀t Ix(x, y, t)

2 for each pixel (x, y), and so forth

for all the entries in matrix H.

We will use H, the spatio-temporal structure tensor, to define three energy functions

for computing how consistent a velocity is with the spatio-temporal derivative data.

An optic flow velocity of best fit can be computed by finding the minimum the energy

function.

We will make use of the optic flow constraint plane in constructing our energy func-

tions. If we assume there is no background gradient and the optic flow constraint
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Figure 2.6: Each image shows one of the entries of the matrix H(x, y) for
each pixel. The upper left shows

∑
∀t Ix(x, y, t)

2, while the upper right shows∑
∀t Ix(x, y, t)It(x, y, t) and so forth for each entry in the matrix as shown in equa-

tion 2.5. This summary statistic captures information about how objects travel
through the scene. For example, the covariance term between x derivatives and t
derivatives shown in the upper right is different depending on which direction traffic
moves over the road.
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plane goes through (0, 0, 0), then a velocity (u, v) defines an optic flow constraint

plane. Our first energy function will be defined as the squared It distance between

each spatio-temporal derivative and the optic flow constraint plane. The It distance

between the point (Ix, Iy, It) is the difference between the value of the constraint plane

at (Ix, Iy) which is −Ixu− Iyv and the value It. This quantity is |Ixu+ Iyv+ It|. This

leads to the following cost function.

ELS =

∥∥∥∥∥∥∥M(x, y)

uv
1


∥∥∥∥∥∥∥
2

(2.6)

This equation can be rewritten to depend only on the matrix H.

ELS = (u v 1) H(x, y)

uv
1

 (2.7)

Notice that this error function is exactly that minimized by the least squares solution

of the following matrix equation.
Ix(x, y, 1) Iy(x, y, 1)

Ix(x, y, 2) Iy(x, y, 2)
...

...


(
u

v

)
=


−It(x, y, 1)

−It(x, y, 2)
...

 (2.8)

If we assume that Ix and Iy have no noise and It is corrupted with i.i.d noise, then

least squares is an unbiased estimator of the values u and v.

Our second energy function will be defined as the sum of the shortest distance from

each spatio-temporal derivative to the optic flow constraint plane.

ETLS = ‖M(x, y)~g(u, v)‖2 , ~g(u, v) =

uv
1

 /

∥∥∥∥∥∥∥
uv

1


∥∥∥∥∥∥∥ (2.9)

The vector ~g(u, v) is a unit vector in the direction of the normal to the constraint

plane, and the matrix equation is the projection of each spatio-temporal derivative

vector onto this unit vector, which is exactly the distance from the spatio-temporal
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derivative to the optic flow constraint plane. The equation can be rewritten as follows.

ETLS = ~g(u, v)TH(x, y)~g(u, v) (2.10)

Notice that this equation contains H, not its inverse, as is common when minimizing

a negative log likelihood of a Gaussian with covariance matrix H. Instead, this energy

function is minimized at vectors that lie in the direction of least variation of H; this

corresponds to the homogeneous representation of the most likely optic flow direction.

An interesting property of this energy function is that its values are bounded between

the largest and smallest eigenvalues of H by the Reyleigh-Ritz theorem.

This energy function ETLS is minimized at the total least squares solution of the

following matrix equation.

M(x, y)

wuwv
w

 = ~0,

∥∥∥∥∥∥∥
wuwv
w


∥∥∥∥∥∥∥ = 1 (2.11)

The total least squares solution is an unbiased estimator when the entries of the

matrix M have been sampled with i.i.d. noise.

Since Ix, Iy and It are all estimated from the same images, all three will have noise

in them. This suggests that the total least squares approach should be used, since

it makes the most reasonable assumption about the distribution of noise. However,

notice that Ix and Iy are measured in brightness change per pixel, while It is measured

in brightness change per frame. There is no clear way of converting the scale from

pixels to frames. Additionally, images are blurred spatially, but often not blurred

temporally, so spatial derivatives may have smaller noise than temporal derivatives

and in any case are likely to have different noise distributions (not i.i.d. noise). The

smaller noise in the spatial dimensions give good motivation for using the least squares

solution rather than the total least squares solution.

As a thought experiment consider changing the arbitrary scaling between pixels and

frames. We can introduce a scaling factor to each spatio-temporal derivative and

rescale our output velocities accordingly. Surprisingly, the least squares solution

gives the same optimal velocity, after rescaling, regardless of the scaling factor. The
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total least squares solution, on the other hand, changes to reflect the modified relative

importance of temporal and spatial errors. Furthermore, as the scaling factor goes

to zero, the It direction collapses to nothing, and the rescaled total least squares and

least squares solution become the same. This provides additional motivation for using

the least squares solution, since it is simpler and does not depend on a scaling factor

between pixels and frames. Additionally, we will see in section 2.6 that the total least

squares solution suffers from errors in common situations in which least squares is

unaffected.

Our third energy function will be based on fitting a line to our data instead of a plane.

If we assume that the observed spatial gradient is always directly in the direction of

travel, then the spatio-temporal derivatives will lie along a single line in the Ix, Iy, It

space. We create an energy function, given a velocity vector (u, v), by finding the

constraint line and then seeing how well the spatio-temporal derivative data matches

this line. We will call this line the primary gradient line and parameterize it by the

unit vector (Lx, Ly, Lt). The following equations hold, since this line must lie in the

optic flow constraint plane and the direction of travel (u, v) is in the same direction

as the gradient (Lx, Ly).

Lxu+ Lyv + Lt = 0 (Optic flow constraint plane)

L2
x + L2

y + L2
t = 1 (Unit vector)

u = kLx, v = kLy (Gradient in direction of movement)

(2.12)

The scaling factor k is arbitrary and must be solved for. We have a system of 4

equations with two given variables u and v and 4 unknown variables Lx, Ly, Lt, and

k. This system can be solved for the primary gradient line.

Lx =
−u√

(u2 + v2)(u2 + v2 + 1)

Ly =
−v√

(u2 + v2)(u2 + v2 + 1)

Lt =

√
u2 + v2√

u2 + v2 + 1

(2.13)
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Our error function will be based on the length of the projected distance of the spatio-

temporal derivative vector onto the primary gradient line.∥∥∥∥∥∥∥M(x, y)

LxLy
Lt


∥∥∥∥∥∥∥
2

= (Lx Ly Lt) H(x, y)

LxLy
Lt

 (2.14)

The higher this number is, the better the spatio-temporal derivative vector is modeled

by the primary gradient line. To create an energy function which we will minimize,

we take the negative of this quantity and, for convenience, add the trace of the matrix

H to ensure we always have a positive value.

Enormal−flow = tr(H)− (Lx Ly Lt) H(x, y)

LxLy
Lt

 (2.15)

The trace of H equals the sum of the eigenvalues of H all of which must be non-

negative since H is a covariance matrix (positive-semidefinite). Therefore, this quan-

tity will always be larger than the quadratic term on the right, which is bounded

to be smaller than the largest eigenvalue of H by the Reyleigh-Ritz theorem. The

optimal velocity of best fit, for this energy function, will be the one corresponding

to a primary gradient line (Lx, Ly, Lt) in the direction of the eigenvector correspond-

ing to the largest eigenvalue of the covariance matrix H. As with ETLS , this energy

functions is bounded within the range of the eigenvalues of the matrix H.

The three energy functions presented in this section represent different ways of deter-

mining how consistent a velocity vector is with the spatio-temporal derivatives seen

at a pixel. They can be used to compute velocity fields of best fit. However, they can

also be used directly within an application, as will be seen later when fitting snakes

to spatio-temporal derivative data.

Before continuing with an analysis of the energy functions, we need to address the

collection of the spatio-temporal derivative statistics. Note that each pixel has its

own M(x, y) and H(x, y) matrices. For each pixel, we do not maintain the complete

matrix M(x, y) but only the covariance summary H(x, y). For stability, H(x, y) is

only updated for frames in which significant temporal variation is observed at the
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pixel location. A count of the number of frames used is maintained in a variable

C(x, y). We ignore all pixels which have too small a C(x, y) value, since they will be

inherently unreliable due to a lack of data.

2.6 Analyzing Object Motion

In this section, we analyze the three energy functions using a synthetic example, a

traffic scene, and video of blood flow in a Zebrafish. In figure 2.7, three lanes of

synthetic traffic are shown in which we send small circular objects at various speeds.

In the top lane, objects move one after the other, slowly from left to right. In the

middle lane, objects move quickly and in the bottom lane, objects of various speeds

are seen. To illustrate the dynamics of an intersection we have sent objects of various

speeds upward in the middle of the image. The least squares solution vectors are

shown in red, the total least squares solution vectors are shown in green, and the

optimal velocity vectors for the Enormal−flow energy function are shown in blue. In

general, the least squares solution produces the best vectors.

In the top lane, all methods give accurate results on a flat background and when

the background gradient is orthogonal to the direction of travel. In the intersection,

there are small differences in the results from the three methods; however, all of the

methods point diagonally between the two directions of travel observed. When the

gradient is in the direction of travel, a bias is introduced due to a shifting of the rest

state and object trajectories which do not lie on a simple plane, as was discussed in

section 2.4. In this region the normal flow method is biased to point more towards

the center of the lane, whereas both least squares and total least squares are biased to

point towards the outside of the lane of traffic. This is because least squares and total

least squares tilt the secondary axis of the optic flow constraint plane to move closer

to the shifted spatio-temporal derivatives (see figure 2.5(d)). However, the normal

flow method tilts the primary axis of the optic flow constraint plane closer to the

shifted points, causing the estimated direction to be biased in the opposite direction.

In the center lane, the same observations as in the top lane can be made, however,

the effects are more pronounced. Additionally, on the right side, where the back-

ground gradient is in the direction of travel, there are differences between the total
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Figure 2.7: We test our methods by moving a succession of objects across an image
with some background gradients and estimate the direction of best fit by minimizing
the three energy functions. Red is least squares, green is total least squares, and blue
is normal flow estimation. The top has slow moving objects, the center fast moving
objects, and the bottom both slow and fast objects. In the middle of the image, we
send objects upward. On the left, we have background gradients which are orthogonal
to the direction of travel and do not generally pose a problem to our methods. On
the right, we have background gradients in the direction of travel, which bias our
results. In the bottom row, we see a case where, in the middle of the lane, total least
squares completely misestimates the optic flow direction due to the aperture problem
and different speed objects.
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Figure 2.8: Two views of the intensity gradient space as three objects with different
speeds pass directly over the pixel (see the green circle in figure 2.4). This configura-
tion poses a problem for the total least squares method since the optimal way to fit
a plane through these points is vertically and this plane corresponds to a very large
velocity nearly orthogonal to the true optic flow.

least squares method and the least squares method. At the edges of the lane, the

total least squares method produces completely inaccurate vectors because it fits the

optic flow constraint plane near vertically to the biased spatio-temporal derivatives.

Least squares, on the other hand, is unable to fit an optic flow constraint plane near

vertically, since this produces large errors in the It direction.

In the bottom lane, both fast and slow objects are observed. The total least squares

solution produces surprising results in the center of the lane when there is no back-

ground gradient. At these locations only gradients in the direction of travel of the

object are seen. As shown in figure 2.8, the passing of each object forms a line in the

spatio-temporal derivative space, with slope corresponding to the speed of the object.

The planes shown in this figure correspond to the optic flow constraint plane for each

of the passing objects. Since the total least squares solution measures errors directly

to the fit optic flow constraint plane, it places the plane vertically instead of at one of

the true constraint planes, producing a large output vector that is nearly orthogonal

to the true direction of travel. The least squares solution does not fall in this trap

since it cannot fit the optic flow constraint plane vertically since this would produce

large errors for some points in the It direction. It is important to note, that while

the total least squares solution has an optimal value which is completely wrong, in
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these cases, the true velocity of any of the passing objects still has a relatively low

ETLS energy value compared to vectors which are not consistent with the observed

spatio-temporal derivatives.

We now turn our attention to the road scene in figure 2.9. The optic flow direction

of best fit for the three estimation methods are displayed as colored arrows. For this

dataset, least squares (red) gives the best and most consistent results. The normal

flow method (blue) has many instances where it points diagonally off the road or lane

of traffic, but is accurate in the middle of traffic lanes where the aperture problem

is present. Total least squares (green) generally gives vectors very similar to least

squares. However, because of noise, when the true velocity is small, it sometimes

produces vectors that are very large and oriented in an arbitrary direction.

We highlight other interesting features of the road scene by visualizing the 3 eigenval-

ues of the structure tensor in false color (figure 2.10). The amount of red corresponds

to the ratio of the smallest eigenvalue to the middle eigenvalue, the amount of green

corresponds to the ratio of the middle eigenvalue to the largest eigenvalue, and the

amount of blue corresponds to the ratio of the smallest eigenvalue to the largest eigen-

value. Because the eigenvalues are all positive, all these ratios are between 0 and 1.

When the structure tensor clearly describes a plane corresponding to the optic flow

constraint plane, then the first two eigenvalues are large and the third eigenvalue is

small, this produces the color green or black. When the structure tensor describes a

line because of the aperture problem, then the first eigenvalue is large and the second

and third are both small producing the color red. In problematic regions, where the

structure tensor does not describe a plane or a line, the color produced is cyan, pur-

ple, or white. In the center of the roads, an overhead view along the center of a lane

sees mostly edges (such as the front and rear bumper) whose gradients are oriented

exactly in the direction of motion of the car. This causes the temporal form of the

aperture problem and shows up in red.

Another example application is the estimation of blood flow in Zebrafish, shown

in figure 2.11. Zebrafish are translucent animals used experimentally because their

circulation is visible in video microscopy. Individual blood cells are visible in the

video sequence; however, they are crowded, overlapping, and partially occluded by

visible anatomical structures. The zoomed in circle shows the optic flow based on a
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Figure 2.9: Our three methods for computing optic flow from spatio-temporal deriva-
tives are displayed for a traffic video. In red, the least squares solution, which is best
in most circumstances. In green, the total least squares solution which is less stable
due to the aperture problem. In blue, the normal flow method which assumes that
gradients are always directly in the direction of travel. For this data set, least squares
is the best and most consistent method. The normal flow method has many instances
where it points diagonally off the road or lane of traffic.
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Figure 2.10: The 3 eigenvalues of the matrix H for each pixel are drawn in false
color with each color representing a ratio between two eigenvalues. Red is the ratio
of the smallest eigenvalue to the middle eigenvalue. Green is the ratio of the middle
eigenvalue to the largest eigenvalue. Blue is the ratio of the smallest eigenvalue to
the largest eigenvalue. Areas in which we are confident about our estimate, the first
two eigenvalues are large, and the third small, causing the image to be green or black.
Areas in which the aperture problem is significant, the first eigenvalue is large in
relation to both the second and the third and the image is red. Areas in which we
are not confident are purple, cyan, or white.
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Figure 2.11: Motion patterns captured from video-microscopy of a larval Zebrafish.
Capturing statistics of the spatio-temporal derivative through time gives automated
ways of estimating flow patterns even when visible blood cells are crowded and chal-
lenging to track. Each criteria is shown in a different color: the least squares solution
(red) gives more consistent results than the total least squares solution (green) and
the normal flow estimate solution (blue). Unlike in an optic flow setting between two
frames of a video, where total least squares is generally used, when considering an
entire video sequence, the least squares solution gives the best results.
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least squares estimator (red), a total least squares estimator (green) and a normal

flow estimator (blue). The cluttered background creates strong background gradients,

which introduce bias into the motion estimates. Additionally, the highlighted circle of

data has relatively little movement within it and not all movement is along a consistent

path. Of the three methods, total least squares has the most difficulty with this

challenging example, producing many vectors of very small magnitude and several bad

estimates pointing in a completely incorrect direction. The least squares estimates are

generally correct and consistent. Normal flow for this example is relatively accurate

in the top portion of the circle, but inaccurate in the center and bottom portions.

The inaccuracies in the estimation method are caused by three factors: the strong

background gradients, the inconsistent movement of objects, and the limited number

of cells which move through the scene.

2.7 Parametric Snake Models

In the second part of the chapter we model roads using a parametric snake model.

Snakes are a method of finding a parameterized curve ~f(s) = (fx(s), fy(s)) which

minimizes some energy function over its length. Traditionally, the snake curve is a

closed loop which is expanded or contracted around an area of interest. There are

usually two types of energy functions which are minimized. External energy functions

match the snake to some external data, such as edges, lines, or other features in

an image. Internal energy functions enforce properties of the curve itself, such as

maintaining a smooth curve, or growing (or shrinking) a curve.

We use cubic B-Splines as our parametric curve due to their simplicity and differen-

tiability. These curves are piecewise, smooth cubic polynomials controlled by a small

number of basis weights (frequently thought of as control points).

~f(s) =
4∑

a=1

Aa(s)~wa (2.16)

Aa are basis functions with weights ~wa. Due to the finite support of the basis func-

tions, there are exactly 4 non-zero basis functions at any parameter value s.
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Figure 2.12: An image of R(x, y), a traditional style energy image which highlights
features of interest, in this case, the roads in the scene. A snake can be fit to this
data by aligning it along the (black) areas of low image value corresponding to an
energy function which is low along lanes of traffic.

2.7.1 Traditional Snake Energy Functions

This section gives an overview of traditional energy functions used in snakes. The

main external energy functions in traditional snakes minimizes the image energy

R(x, y) observed over the snake.

Eimage(s) = R
(
~f(s)

)
(2.17)

Common energy functions for R include measures that are low in regions of edges,

encouraging snakes to follow contours on an image. Figure 2.12 shows the energy

function proportional to −C(x, y), defined in section 2.5, highlighting areas with

common intensity changes as low energy black regions.

There are traditionally two internal energy functions. The first encourages the snake

to be smooth by penalizing its curvature and the second encourages the snake to grow

by penalizing the negative of the magnitude of the first derivative.

Esmooth(s) =
∥∥∥ ~f ′′(s)∥∥∥2 (2.18)

Egrowth(s) = −
∥∥∥~f ′(s)∥∥∥2 (2.19)
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The complete snake energy function is a linear combination of these energy terms

with weights α, β, γ which must be empirically determined. The energy function is

integrated over the entire length of the snake to create an energy function which is

minimized to produce the best snake model.

Êtraditional = α

∫
Eimage(s) ds+ β

∫
Esmooth(s) ds+ γ

∫
Egrowth(s) ds (2.20)

2.8 Velocity Snake Energy Functions

In this section, we explore several different energy functions for fitting snake models

to roads using spatio-temporal derivative data. We include several energy functions

to avoid problems specific to our velocity constrained snakes. Additionally, we add

energy functions to allow the snake to have a dynamically adjustable width, so as to

cover the entire road.

We make a fundamental change from the traditional snake model by proposing an

external energy function which depends on the derivative of the snake instead of its

position. The snake derivative is considered as an object velocity and fit to spatio-

temporal derivative structure tensors. A major advantage obtained by using the

derivative of the snake is that the snake can be an open curve with stable endpoints

which do not have their position explicitly fixed. This is not generally possible with

traditional snakes. Constraining the derivative of the snake instead of its position

also has two minor side effects. First, there is the possibility that the snake drifts

along or off the road. Second, the snake can slow to a stop at a particular position.

We introduce two new energy functions to combat these effects.

Of the three traditional energy functions presented in the last section, we will only

use Esmooth . Eimage will be replaced with an energy function Eexternal which relates the

derivative of the snake with the spatio-temporal derivatives and Egrowth is not needed

since our snakes are not closed loops.
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2.8.1 Fitting Snakes by Velocity

We fit snakes to the spatio-temporal derivative structure tensor by minimizing the

energy functions developed in section 2.5. This interprets the derivative of the snake

as a velocity and matches it to the spatio-temporal structure tensor through the use

of one of our previously described energy functions.

Eexternal =

∫
E(~f ′(s))ds (2.21)

The energy function used can be any of ELS , ETLS , Enormal−flow . The use of this

method with ETLS was first published by us in [36].

Although we showed the least squares energy function gives the most sensible optic

flow vectors, the total least squares energy function is a better method for fitting

snakes to spatio-temporal structure tensors. The main advantage of the total least

squares approach is that the energy function is bounded by the Reyleigh-Ritz theorem

to be within the smallest and largest eigenvalues of H. Furthermore, we scale H so its

largest eigenvalue has a value of 1, simplifying the use of the ETLS energy function.

The least squares approach, since it does not normalize the velocity vector, provides no

bounds. In the context of a snake, having a bounded energy function produces much

better behaved snakes with consistent error magnitude across their entire lengths.

The advantage of using the spatio-temporal structure tensor as opposed to an optic

flow estimate is that it includes information about which alternate directions are

nearly as good as the optimal direction. For example, in an intersection, there is

inherent ambiguity in the structure tensor which is ignored if only the best fit flow

vector is used.

Since our snake is defined over the continuous domain but each H is only defined

discretely at a pixel, we use bilinear interpolation of the H(x, y) matrices surround-

ing the point ~f(s) to compute equation 2.21. Computing the analytic derivative of

this energy function with respect to the B-Spline control points, taking into account

both the bilinear interpolation and the homogeneous coordinates is described in sec-

tion 2.9.2.
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Figure 2.13: An image of N(x, y) used in the computation of Eoff−road . This image
is zero (white) on the road. For pixels that are not on the road the distance from the
pixel to the closest point on the road is used as the value.

2.8.2 Fitting Snakes To Vector Fields

Although we have focused on using the energy functions developed earlier in the

chapter (ELS , ETLS , Enormal−flow) directly, we can also first compute a vector field

and then match the velocity of the snake to this vector field. The vector field can be

computed using the best fit vectors created by minimizing any of the three energy

functions. Once we have computed the vector field we can fit the snake to it using

the following energy function.

Evelocity(s) =
∥∥∥~f ′(s)− ~V (~f(s))

∥∥∥ (2.22)

This energy function directly compares the derivative of the snake and the vector field.

The analytically computed derivative of this energy function is given in section 2.9.3.

2.8.3 Drift Prevention

Since the optic flow equation only constrains the derivative of the snake, small errors

in the spatio-temporal derivative can cause the snake to drift along the road, both

forwards and sideways. We define an energy function which prevents the snake from

drifting off the road by penalizing locations which are completely off the road. Recall
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that we maintain a count, for each pixel, of the number of frames with significant

image variation C(x, y). Pixels with a high C(x, y) have seen a lot of motion and

are usually near the road. We use a threshold γ to define a function N(x, y) which

increases with distance from a road.

N(x, y) =

0 if C(x, y) ≥ γ

d otherwise
(2.23)

In this equation d is the distance to the closest pixel with sufficient image data. This

score creates useful gradients in locations far from regions of interest.

Eoff−road(s) = N
(
~f(s)

)
(2.24)

Figure 2.13 shows an example image of N(x, y).

2.8.4 Minimum Speed

It is possible for the snake to come to a stand still at a location where H specifies a

small speed. To prevent this, we add an energy function that is large when the snake

is moving too slowly.

Eminimum−speed(s) =

∥∥∥∥∥ ~f ′(s)α

∥∥∥∥∥
−β

(2.25)

The number α depends on the minimum speed we wish to maintain, and β > 1 deter-

mines the harshness of the penalty we impose on small speeds. For our experiments,

we chose α = 1pixel per frame and β = 3. The energy function should be very close

to zero under normal operations; however, when the snake slows down drastically

(with our parameter choices 10 times slower than the target value) then this energy

term becomes large and forces the snake to move over the region at a minimum speed.

2.8.5 Snake Thickness

From ground-based video cameras, roads often have significant thickness. We model

this thickness within the snake framework by expanding the snake in the direction
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perpendicular to the tangent of the curve. For a given energy function E, comprising

any of the energy functions considered so far, the overall energy which was formerly

computed as: ∫
E(~f(s))ds (2.26)

now becomes an area integral, going both along the snake and, at each location s,

perpendicular to the snake with a width 2fθ(s):∫
s∈[0,1]

∫
p∈[−1,1]

E(~f(s) + pfθ(s) ~̃f
′(s)⊥) dp ds (2.27)

where ~̃f ′(s)⊥ is a unit vector in the direction perpendicular to the tangent of the

snake at location ~f(s). We parameterize the thickness along the snake fθ(s) as an

additional B-Spline.

In general, we would like the snake to fill the entire road that is traveling in a partic-

ular direction, thus we include an energy function which forces the snake to grow in

thickness:

Ethicker = −
∫
fθ(s)ds (2.28)

Minimizing this function simply encourages the snake to grow as large as possible.

Additionally, we want the snake to be a consistent width, so we penalize changes in

thickness by penalizing the squared first derivative of the width.

Echange−thick =

∫
f ′θ(s)

2ds (2.29)

When adding thickness, we first find and parameterize the road using a fixed width

snake. Then a second round of optimization is performed which allows the width

of the road to be adjusted dynamically. We found this two step approach to be

necessary to avoid the situation where the ends of the snake collapse to nothing in

order to overfit a small area of the image.
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2.9 Derivative of Energy Function

In this section, we demonstrate the ability to analytically compute the derivative

of the energy functions with respect to B-Spline control points. This allows fast

optimization tools to solve for the control points which minimize the overall energy.

All of the energy functions we have presented are differentiable, we show the analytic

derivatives for the two most difficult energy functions: ETLS and Evelocity .

2.9.1 Derivatives of the B-Spline

Recall that cubic B-Splines are weighted sums of basis functions exactly 4 of which

are non-zero at any parameter value s.

~f(s) =
4∑

a=1

Aa(s)~wa (2.30)

To minimize the energy, we must compute the derivative of the energy with respect

to the basis function weights ~w. These weights are sometimes thought of as control

points; however, the B-Spline does not generally go through these points. Each

weight variable is associated to one of the dimensions of the B-Spline, either the x or

y dimensions.

~f(s) =

(
fx(s)

fy(s)

)
, ~w =

(
w

[x]
1 w

[x]
2 · · · w

[x]
n

w
[y]
1 w

[y]
2 · · · w

[y]
n

)
(2.31)

The following derivatives will be needed to compute derivatives of energy functions.

The derivatives of the B-Spline with respect to its parameterization s is a weighted

sum of the derivatives of the basis functions.

f ′x(s) =
dfx(s)

ds
=

d

ds

4∑
a=1

Aa(s)w
[x]
a =

4∑
a=1

A′a(s)w
[x]
a (2.32)
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Figure 2.14: An illustration of bilinear interpolation. The matrix H is only defined
at each of the pixels. The location (x,y) is the nearest pixel with coordinates smaller

than ~f(s). The variables α and β are defined as the fractional parts of the vector
~f(s) in the x and y direction respectively.

The derivative of the B-Spline with respect to one of its basis function weights simply

picks out the corresponding basis function.

dfx(s)

dw
[x]
τ

=
d

dw
[x]
τ

4∑
a=1

Aa(s)w
[x]
a = Aτ (s) (2.33)

The mixed second derivative of the B-Spline with respect to its parameter s and a

basis function weight w
[x]
τ is similarly computed.

df ′x(s)

dw
[x]
τ

=
d

dw
[x]
τ

4∑
a=1

A′a(s)w
[x]
a = A′τ (s) (2.34)

A derivative of the x-axis spline with respect to a y-axis basis function weight is zero.

df ′x(s)

dw
[y]
τ

=
d

dw
[y]
τ

4∑
a=1

A′a(s)w
[x]
a = 0 (2.35)

2.9.2 Derivative of ETLS

In this section, we take the derivative of ETLS with respect to the basis function

weights. Later in the derivation we will have to specify which dimension (x or y) the

weight variable is associated with.
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Recall the equation for computing ETLS .

ETLS =

∫
~g(s)TH(~f(s))~g(s)ds (2.36)

Notice, however, that the term H(x, y) is only defined at pixel values, while ~f(s) is

defined continuously. We use bilinear interpolation of ETLS for the points around the

true location ~f(s). Define α and β as the fractional part of ~f(s) which is needed for

the bilinear interpolation and is illustrated in figure 2.14. Defining x and y as the

integer parts of ~f(s), the equation for ETLS with bilinear interpolation can then be

stated as follows.

ETLS = (1− α)(1− β)

∫
~g(s)TH(x, y)~g(s)ds

+ α(1− β)

∫
~g(s)TH(x+ 1, y)~g(s)ds

+ (1− α)β

∫
~g(s)TH(x, y + 1)~g(s)ds

+ αβ

∫
~g(s)TH(x+ 1, y + 1)~g(s)ds

(2.37)

When the derivative of this equation is taken with respect to a basis function weight

w each term expands to two via the product rule.

d

dw
ETLS =

d

dw
{(1− α)(1− β)}

∫
~g(s)TH(x, y)~g(s)ds

+ (1− α)(1− β)
d

dw

{∫
~g(s)TH(x, y)~g(s)ds

}
+

d

dw
{α(1− β)}

∫
~g(s)TH(x+ 1, y)~g(s)ds

+ α(1− β)
d

dw

{∫
~g(s)TH(x+ 1, y)~g(s)ds

}
+

d

dw
{(1− α)β}

∫
~g(s)TH(x, y + 1)~g(s)ds

+ (1− α)β
d

dw

{∫
~g(s)TH(x, y + 1)~g(s)ds

}
+

d

dw
{αβ}

∫
~g(s)TH(x+ 1, y + 1)~g(s)ds

+ αβ
d

dw

{∫
~g(s)TH(x+ 1, y + 1)~g(s)ds

}

(2.38)
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First we consider only the terms which take the derivative of α and β. Before giving

the equation for this quantity, notice the following.

α = fx(s)− bfx(s)c (2.39)

β = fy(s)− bfy(s)c (2.40)

We assume that both x(s) and y(s) are not integers and therefore the derivative of

α and β is defined. Taking the derivative of these with respect to an x-axis B-Spline

weight, we obtain the following quantities.

d

dw
[x]
τ

{α} =
d

dw
[x]
τ

{
fx(s)

}
(2.41)

As noted in equation 2.33 this is the single basis function corresponding to the weight

w
[x]
τ and can be easily computed. Notice that β is not dependent on x-axis related

B-Spline weights.
d

dw
[x]
τ

{β} = 0 (2.42)

We now consider the derivative of terms in equation 2.38 which have derivatives of α

and β in them. With respect to an x-axis B-Spline weight the terms are as follows.

∫
~g(s)T


− (1− β)H(x ,y)

+ (1− β)H(x+ 1,y)

− βH(x ,y + 1)

+ βH(x+ 1,y + 1)

~g(s)
dfx(s)

dw
[x]
τ

ds (2.43)

Similarly, we can take the derivative with respect to a y-axis B-Spline weight.

∫
~g(s)T


− (1− α)H(x ,y)

− αH(x+ 1,y)

+ (1− α)H(x ,y + 1)

+ αH(x+ 1,y + 1)

~g(s)
dfy(s)

dw
[y]
τ

ds (2.44)
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We turn our attention now to the terms in equation 2.38 which take the derivative of

the integral portion.

(1− α)(1− β)
d

dw

{∫
~g(s)TH(x, y)~g(s)ds

}
+ α(1− β)

d

dw

{∫
~g(s)TH(x+ 1, y)~g(s)ds

}
+ (1− α)β

d

dw

{∫
~g(s)TH(x, y + 1)~g(s)ds

}
+ αβ

d

dw

{∫
~g(s)TH(x+ 1, y + 1)~g(s)ds

}
(2.45)

Since the weight w and the integration variable s are independent, by the Leibniz

integral rule we can bring the derivative within the integral. Furthermore, notice that

the H matrices are not directly dependent on the spline parameter s as long as the

spline continues interpolating from the same pixels. Finally, notice that the standard

power rule and chain rule still work for quadratic symmetric matrix equations. We

rewrite the equation as follows.

2

∫
~g(s)T


(1−α)(1−β)H(x y)

+α(1−β)H(x+1 y)

+(1−α) βH(x y+1)

+α βH(x+1 y+1)

 d

dw
{~g(s)} ds (2.46)

The only remaining quantity we need to compute is the derivative of ~g(s). Recall the

equation for ~g(s).

~g(s) =

f
′
x(s)

f ′y(s)

1

 /
√
f ′x(s)

2 + f ′y(s)
2 + 12 (2.47)

The derivative of this quantity is computed via a product rule.

d

dw
{~g(s)} =

d

dw


f

′
x(s)

f ′y(s)

1



(
f ′x(s)

2 + f ′y(s)
2 + 12

)− 1
2

+

f
′
x(s)

f ′y(s)

1

 d

dw

{(
f ′x(s)

2 + f ′y(s)
2 + 12

)− 1
2

} (2.48)
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The first term is easily computed using equation 2.34. Notice, however, that the y

vector component will be zero when the derivative is with respect to an x-axis related

B-Spline weight (and vice versa). The third component of the vector will always be

zero. The second term further decomposes by the chain rule.

−1

2

f
′
x(s)

f ′y(s)

1

(f ′x(s)2 + f ′y(s)
2 + 12

)− 3
2 d

dw

{(
f ′x(s)

2 + f ′y(s)
2 + 12

)}
(2.49)

Finally, for an x-axis related weight term w
[x]
τ the last term becomes the following.

2f ′x(s)
d

dw
[x]
τ

{f ′x(s)} (2.50)

This is computed by equation 2.34. The case for a y-axis related weight term is

similar.

Following these derivations we have been able to analytically differentiate ETLS with

respect to the B-Spline weights taking into account both the bilinear interpolation

present in the computation of H and the homogeneous coordinates of ~g(s). This

allows us to use fast optimization algorithms which require gradient information to

solve for the optimal snake in application settings.

2.9.3 Derivative of Evelocity

In this section, we take the derivative of Evelocity with respect to the basis function

weights. Later in the derivation we will have to specify which dimension (x or y) the

weight variable is associated with.

dEvelocity

dw
=

d

dw

∫ ∥∥∥~f ′(s)− ~V (~f(s))
∥∥∥ ds (2.51)

Since the weight w and the integration variable s are independent, by the Leibniz

integral rule we can bring the derivative within the integral.

dEvelocity

dw
=

∫
d

dw

∥∥∥~f ′(s)− ~V (~f(s))
∥∥∥ ds (2.52)
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Using the `2 norm, this can be rewritten as

dEvelocity

dw
=

∫
d

dw

√
rx + ry ds (2.53)

where

rx =
(
f ′x(s)− Vx(~f(s))

)2
ry =

(
f ′y(s)− Vy(~f(s))

)2 (2.54)

Focusing on the square root term, we compute the following using the chain rule.

d

dw

√
rx + ry =

1

2
√
rx + ry

d

dw
(rx + ry) (2.55)

Focusing on the term rx we compute

drx
dw

=
d

dw

(
f ′x(s)− Vx(~f(s))

)2
= 2

(
f ′x(s)− Vx(~f(s))

)(df ′x(s)
dw

− dVx(~f(s))

dw

)
(2.56)

The mixed second derivative of the B-Spline term was computed in equation 2.34 for

the case of an x related weight term w[x]. If the weight is instead y related (w[y]) the

resulting derivative is zero. We continue by taking the derivative of the vector field.

dVx(~f(s))

dw
=
∂Vx(~f(s))

∂fx(s)

dfx(s)

dw
+
∂Vx(~f(s))

∂fy(s)

dfy(s)

dw
(2.57)

The V terms are just the derivatives of the road vector field and can be computed

by finite differences and interpolation at location ~f(s) as is done in figure 2.2. If

the weight variable is x related then the first term is non-zero while the second is

zero. Combining these equations we are able to calculate the derivative of rx. The

derivative of ry can be derived in a similar fashion.

In this way, we are able to compute the derivative of the Evelocity energy function with

respect to the basis function weights. Although we have only shown how to differ-

entiate two of the energy functions, every presented energy function is analytically

differentiable and easily computable.
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Algorithm 1 Find all roads

while seed points available do
- Choose a seed point and initialize a short initial snake in the direction most
consistent with the optic flow equation
while snake is allowed to grow (see section 2.10.2) do

- Find the snake parameters which minimize the energy function
- Add a span to one of the ends of the snake

end while
- Optimize the snake with the inclusion of the snake width energy functions
Ethicker and Echange−thick

- Remove the area around the snake and around the initial seed location from
the set of allowable seed positions

end while

Figure 2.15: The set of seed locations for a traffic scene. The darker the pixel location,
the more consistent the spatio-temporal derivatives in the region are and the better
it is as a start location for a snake.

2.10 Snake Optimization Algorithm

We construct our snakes using a cubic B-Spline, which ensures continuity and dif-

ferentiability of the snake and allows for easy differentiation of the energy functions.

The snake is discretized using a uniform sampling with an average of one point per

pixel that the snake covers. A control point is placed approximately every 10 pixels.

Our method is outlined in algorithm 1. For our optimization algorithm we use the

standard interior-point method provided by Matlab.
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2.10.1 Snake Seed Locations

A seed set of possible initialization points is found by looking for locations of consistent

motion. For each pixel with C(x, y) ≥ γ a small snake is placed with the velocity

of best fit to H(x, y) as determined by ELS and the energy value of the snake is

recorded at that location. The first snake is initialized at the location with the lowest

energy. After optimization of the snake all points covered by the snake and around

the initialization point of the snake are removed from the seed set and the remaining

point with the smallest energy value is chosen as the location for initializing the next

snake. This procedure is repeated until there are no more points in the seed set.

Figure 2.15 shows an image of the seed locations before the first snake is initialized.

2.10.2 Stopping Condition

When adding spans to the ends of the snake, we must evaluate whether the new section

of the snake is still on the road. One stopping condition is when the snake reaches

the edge of the image. The snake must also stop if it encounters spatio-temporal

derivatives incompatible with its own speed and direction or if it encounters the end

of the road. A simple threshold on the energy functions ETLS and Eoff−road for the

newly added span, can effectively and robustly detect when the snake is on the road.

2.11 Results of Snake Models

In this section, we show the results of fitting snakes to video data. The NGSIM data

set of Peachtree Street in Atlanta was captured through a collaboration of researchers

interested in modeling vehicle behavior [2, 65]. A series of cameras were set up viewing

consecutive parts of an urban road, and 15 minutes of data were simultaneously

recorded in each. Extensive ground truth is freely available for the data set, including

georeferenced lane centerlines, intersection locations and traffic light cycles.

Figure 2.17 shows snakes fit to the spatio-temporal derivatives computed from the

NGSIM data. In all cases, the main roads in the scene were automatically discovered
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Figure 2.16: Hand annotated lanes from NGSIM, used as ground truth for evaluation.
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Mean Mean
Min Dist Angle
(pixels) (degrees)

1.4 1.2
3.6 1.5

Mean Mean
Min Dist Angle
(pixels) (degrees)

5.6 9.7
0.9 3.6
2.5 7.4
2.5 7.8
2.9 16.0
1.9 5.3

Mean Mean
Min Dist Angle
(pixels) (degrees)

2.9 1.8
2.1 1.8

† 39.9 † 73.9
† 39.6 † 107.8

5.0 16.0
3.7 7.8
3.3 15.9
1.9 10.3
4.1 4.7
1.1 2.6
1.8 6.3
0.4 1.7
3.1 15.2

Figure 2.17: Snakes, shown in blue with arrows indicating their speed are shown over
a frame of the video. The area which each snake covers is shaded a distinct color based
on its direction. The mean minimum distance to one of the hand annotated lanes of
figure 2.16 is computed for each snake. The mean angular distance between the road
direction and the direction of the closest hand annotated lane is also computed and
shown for each road. Data marked with † is from snakes that fit to roads which were
not annotated in the ground truth.
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and parameterized with direction, speed, and width. There was no post-processing

applied to the results to remove (or connect) roads, or to deal with the effects of

occluding trees and buildings. For comparison, please refer to figure 2.16, which has

the ground truth lane locations in the scene as determined by hand annotation. We

report the mean distance of the road centerline to the nearest ground truth lane

centerline and the mean angle between the tangent of the snake and the direction of

the nearest lane centerline.

As with most snake implementations, the relative weighting of the energy functions

must be empirically determined. The final energy function which is used on all the

videos in figure 2.17 is as follows.

Etotal =60ETLS + 0.1Esmooth+ 1Eoff−road

+ 1Eminimum−speed+0.05Ethicker +0.1Echange−thick

(2.58)

To show the robustness of the parameter choices, figure 2.18 shows results for the

same scene when each energy function weight is multiplied by a factor of 1
2

and 2.

There is very little difference between these results, showing that the exact value of

the parameters is not particularly important: the algorithm will determine the correct

lane annotations over a wide range of parameter values.

Although ETLS is the most effective of the velocity matching energy functions, since

it is nicely bounded within a small range, we include results when using the other

velocity matching energy functions in figure 2.19. All energy functions are able to

parameterize all major roads; however, there are some differences. ETLS is able to

make use of the ambiguity in the structure tensor to have multiple roads take different

paths through the intersection. ELS does not find the correct width for the two roads

on the right side of the scene, this is due to a scaling issue between the scaling factors

for ELS and Ethicker . Such problems are hard to avoid when using ELS since it has

an unpredictable range of values. Enormal−flow is also nicely bounded, and takes two

different paths through the intersection. One of the roads has an end which becomes

very narrow, and an extra, small road is created in the upper portion of the scene.

In general Enormal−flow is not as effective as ETLS . Evelocity does not have access to

the ambiguity captured within the spatio-temporal structure tensor and therefore

behaves in a much more rigid fashion. It is only able to take one path through an

intersection, and in general has problems with finding the correct width of the road.
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Low
·1
2

High
·2

ETLS Esmooth Eoff−road

Low
·1
2

High
·2

Eminimum−speed Ethicker Echange−thick

Figure 2.18: For the weight assigned to each energy function we divide it by a factor of
2 from the default value on top and multiply it by a factor of 2 on bottom. Although
there are subtle differences in the results, the main roads are still extracted in all
cases.
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ETLS ELS

Enormal−flow Evelocity

Figure 2.19: Various velocity matching energy functions are used to compute a road
parameterization. In general, ETLS is the easiest energy function to control due to
its bounded range. ELS shrinks to a very small road width on the right side. This
is caused by a scaling issue between the scaling factors for ELS and Ethicker , which
is difficult to avoid due to the unpredictable range of the ELS energy function. The
three energy functions based on matching the snake derivative to the spatio-temporal
derivative statistics directly are more effective within intersections, where the inherent
ambiguity of the data allows different roads to be placed in different directions. The
energy function Evelocity is very rigid in how it parameterizes the data, always going
the same direction in intersections and having trouble finding the correct road width.
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Although this energy function is not strictly bounded between any values, it tends to

remain within a small range and is not too difficult to scale properly.

2.12 Conclusion

The spatio-temporal structure tensor is a convenient, efficient, and informative sum-

mary of the image gradient information captured over time at a particular pixel.

While it has been used in several applications before, there has been no clear illustra-

tion of failure modes, recognition that different methods of computing the flow vector

give noticeably different results, or integration of the structure tensor into a larger

scale fitting problem.

Our results with fitting vectors to spatio-temporal derivatives show that using least-

squares is best for solving for optic flow in video sequences. The structure tensor

field itself is a valuable characterization of motion patterns which we use directly as

a basis for fitting parametric snake models to roads.

We define new snake energy functions based on different methods of matching a

velocity vector to spatio-temporal derivative statistics. This allows us to construct

stable open-ended snakes with constrained derivative terms. Additionally, we add the

ability to adjust the thickness of the snake to find the proper width of the road.

Areas for future work include integrating the parametric roads as priors within a

tracking algorithm and solving for an explicit road network. Additionally, one can

use the parametric models found in locations with significant road motion to learn

a scene-specific appearance model in order to extend roads onto areas that have not

yet observed motion.
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Chapter 3

Parameterizing and Modeling

Tissue Motion within Medical

Images

Abstract

Medical imaging techniques such as CT and MRI are becoming increasingly common

for diagnosis and treatment. Tissue motion during image acquisition can cause arti-

facts and incorrect quantitative measurements if not properly taken into account. In

this chapter we look at three techniques for modeling tissue motion within medical

images. First, we present a traditional approach to 4D CT lung modeling based on an

external measurement of breath phase. Second, we present our alternative data driven

approach which does not require an external breath measurement. Third, we present

a novel free form deformation based tissue motion model. This approach is applicable

to a more general set of tissue motion modeling problems and will be presented using

a heart/lung MRI image dataset and synthetic data.

3.1 Introduction

Medical imaging gives a 3D view of tissues in the body. Often, the goal is to under-

stand the motion of the tissues. For CT and MRI data, the key problem is that these

imaging tools cannot directly measure motion, do not capture a complete 3D image
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Figure 3.1: A CT scanner is used to repeatedly image slabs of the lung approximately
1 inch in height while a patient breaths. At the same time a belt around the chest of
the patient measures lung volume. Although, the data acquisitions, which are ordered
by time do not have a coherent pattern with respect to breathing, the slabs can be
reordered by the belt measurement.

at once, and do not capture images frequently enough to directly track tissue motion.

In this chapter we consider two approaches to address this problem.

CT imaging is often used in lung cancer diagnosis and treatment. Unfortunately,

lung tumors move with the lung. Since radiation treatments affect both the tumor

and the healthy tissues near the tumor, effective radiation treatment planning re-

quires modeling the motion of the tumor and the surrounding healthy tissues. In the

past, motion artifacts have usually either been ignored or reduced through the use of

breath holds during image acquisition. However, for many patients, it is infeasible to

maintain a breath hold during radiation treatment. Accordingly, radiation treatment

plans create large margins around the tumor to account for breathing, and this causes

extra damage to healthy tissue. Thus, to make good radiation treatment plans, it

is necessary to understand the motion of the tumor and surrounding tissue during

breathing.

Simple solutions to the motion issue include using fluoroscopy to monitor tumor

movement by placing a radioactively visible marker near the tumor and using fixed,

breath hold images for treatment planning. In some cases, patient breathing has

been controlled in an attempt to predict tumor position and create motion maps [75,

99]. Recently, four-dimensional CT (4D CT) has been developed, which uses an

external measure of breath phase to create multiple CT datasets at various breath

phases [28, 38, 40, 89]. This is more effective than fluoroscopy at determining tumor
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movement [87]. This technology continues to advance in complexity, but the need for

an external measure of breathing has remained a key component of all lung 4D CT

methods thus far.

The traditional way of creating a 4D CT lung model uses the following general pro-

cedure [40, 41]. Figure 3.2 shows the parts of the traditional model along its right

side.

1. Image Acquisition - A common multi-slice clinical CT scanner is configured to

capture a volume roughly one inch in height. As shown in figure 3.1, a cross

sectional volume of the lung usually about one inch in height is imaged repeat-

edly while the patient breaths. The patient is then moved one inch through the

CT scanner, to the next couch position, and more images are acquired. We use

the term slab to refer to a single image acquisition, taken at a particular couch

position and breath phase.

2. Breath Phase Estimation - Each slab takes approximately one second to acquire

with several seconds between acquisitions. This is slow enough and patient

breathing is irregular enough that breathing cannot be estimated from the time

of image acquisition. Traditionally, an external breath measurement such as a

belt measuring chest circumference is used to estimate the air volume in the

patient’s lung. Although breathing is a cyclic process, since lung images with

the same air volume look very similar during inhalation and exhalation, breath

phase is generally modeled as a one dimensional parameter which can be thought

of as air volume in the lung.

3. Lung Volume Reconstruction at All Breath Phases - A complete 3D data volume

is generated for each part of the breathing cycle by picking a target breath phase

and choosing the data at each couch position acquired closest to the target

breath phase. Figure 3.3 shows, on the left side, the breath phase measurements

for each slab plotted against the CT scanner position. For a target breath phase

shown as a vertical line, the right side shows the reconstruction of the lung

corresponding to the slabs closest to the target breath phase.

This procedure, although used clinically, has substantial limitations. Errors such as

the diaphragm appearing twice in the lower part of figure 3.3, are common. These

problems arise from the fact that the measurement of the chest circumference is not
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Figure 3.2: Two alternative workflows for using 4D CT lung reconstructions. Boxes
marked in gray are methods which are presented in the text. Methods for estimating
the breath measure are shown in section 3.4, the free form deformation model is in
section 3.5. The rightmost path in this diagram constitutes the standard approach
and is described in section 3.3.
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Figure 3.3: On the left, the external breath measurements for each 1 inch high image
acquisition is shown organized by scanner couch position. For a target breath phase,
shown as a vertical line, a lung volume is created by picking the slab at each couch
position of the CT scanner with breath phase closest to the line. On the right,
a coronal cross section of the 3D lung reconstruction corresponding to the target
breath phase is shown. The red box shows the size of image acquisitions at a single
couch position (a slab). Several artifacts caused by tissue motion are visible near the
diaphragm.
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perfectly correlated with lung air volume (or the phase of the breathing cycle). In

addition, not all breath phases have a corresponding sample image. Section 3.3 details

the complete standard process, including several problems that commonly arise.

In section 3.4 we present a novel method for assembling 4D CT datasets by creating

a substitute for the external breath measurement which is based on the image data

itself. This simplifies image acquisition, data synchronization, and allows 4D CT to

be used retrospectively even when an external breath measurement was not initially

acquired. It is our intention that any algorithm that would use an external physiolog-

ical measurement can instead be modified to use our breath measure. This portion

of the work was first published in [35, 37].

The goal of lung 4D CT is generally to understand tumor motion in the lung during

breathing. In addition to the lung reconstructions at an arbitrary breath phase,

this requires knowledge of how the tissue itself is moving during breathing. In the

traditional approach, a small number of lung reconstructions are created at evenly

spaced intervals in the breath phase. Techniques such as optic flow [38] and template

matching [35] can be used to compute tissue motion by following motion through

these lung reconstructions.

In section 3.5 we construct a richer 4D CT lung model by directly modeling tissue

deformation and generalizing to different imaging modalities such as MRI and to

situations where more than one degree of freedom is present. A three part model is

used where the following problems are simultaneously solved.

1. Reference volume estimation – Estimating the undeformed appearance of the

data volume.

2. Parameterized deformation map generation – Estimating the deformation of the

reference volume due to tissue motion.

3. Deformable-pose estimation – Estimating, for each time sample, the motion

parameter of the deformation map at the time of sampling.

Our approach is data driven and does not rely on either a separately acquired reference

volume or feature detection and tracking. Tissue motion is modeled by deforming a
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reference volume with a cubic B-Spline free form deformation. An iterative method

is used to simultaneously solve for the reference volume and deformation map while

updating the pose estimates. This same process is demonstrated on 4D CT lung data

and heart/lung cine-MRI data.

The remainder of this chapter is divided into three parts. First, we present the tra-

ditional method for creating 4D CT lung models using externally measured breath

phases. Second, we present a method of creating a global breath measure without

externally measuring breath phases. Third, we present an improved method for creat-

ing a lung deformation model based on a free form deformation map and a reference

lung. We show this approach also applies to cine-MRI of a heart and evaluate on

simulated data. Figure 3.2 shows a flowchart of the different parts and approaches to

creating a 4D CT lung model.

3.2 Related Work

The use of 4D aware imaging and radiation treatment is a growing area with many

applications (see [53] for a review). Due to a diversity of scanner technologies, 4D CT

of the lung can be executed in a number of different ways. Some examples include

spiral and cine mode CT with an external breath measurement [40, 89]. On a lower

level, the X-ray beam can be gated based on a physiological signal and specialized

CT algorithms used to reconstruct the tissue volume [66].

The addition of a deformation model to 4D CT and cardiac MRI has been explored

previously. B-Spline models of tissue deformation have been fit to tagged MR im-

ages [44, 85], and untagged MR images [18]. In 4D CT of the lung a B-Spline de-

formable model has been used to find the deformation between 3D reconstructions at

approximate maximum inhale and approximately maximum exhale [78]. More recent

work aims to minimize the artifacts caused in the 3D reconstruction at each breath

phase. When data is missing in a particular slab, optic flow is used to reconstruct

a 4D CT data set through interpolation of existing measurements to the required

respiratory phase. This helps for some kinds of artifacts but not artifacts caused

by vertical motion that causes tissue to leave the (one inch high) data acquisition

volume [28].
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The newest methods for creating 4D CT reconstructions of lung motion directly infer

a deformation map from the slab data. Some 4D CT studies of the lung have relied

on a given reference image which is acquired by scanning the patient during a breath

hold [58, 102]. A lung deformation model can be created by registering the sample

images from different parts of the breath to the breath hold image and fitting a B-

Spline to the deformation. McClelland et al . also briefly investigated the creation of

a breath measure from the slab data by measuring the anterior-posterior movement

of the skin surface in the slab [58]. A sine wave is fit to this signal to create a breath

measure. Ultimately this method was abandoned in favor of an external breath

marker. Our method circumvents both these problems, it acquires a breath measure

directly from the CT images and does not require a separately acquired reference

image.

Our deformation based motion model, which simultaneously aligns all images in a

dataset, is similar to, but more general than, image registration, in which the trans-

formation between two images is found. In particular, variational methods in compu-

tational anatomy find the geodesic path between images within the set of diffeomor-

phisms [8, 27, 60]. These transformations create a time parameterized vector field

similar to our motion model. In this model, the deformation map and “time” mag-

nitude is proportional to the amount of deformation needed to align the two images,

which elegantly defines a metric between image pairs based on aligning the images

with a diffeomorphism. On the other hand, in our model the deformation map and

“time” magnitude (or breath phase magnitude) creates a physiologically meaningful

vector field which describe tissue motion at every part of the breath cycle.

In the computer vision community, recent work on holistic analysis of sets of im-

ages that vary due to a few parameters is often based on manifold learning. Ap-

proaches include using manifold constraints to regularize segmentation of cardiac

MR images [104], and to learn the low-dimensional parameterization of a cardiac MR

set [82], in order to find nearby neighbors for effective image interpolation. However,

neither approach solves for an explicit reference volume or deformation map.

The work in this chapter is related to manifold pursuit [80], which augments PCA by

introducing invariance to an image transformation such as translation. This allows

a set of images to be represented using aligned basis images and a transformation
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function. Our work makes the image deformation much more general, using B-Spline

deformation as opposed to affine warps, but assumes a single reference image rather

than a linear subspace.

3.3 Traditional Approach to Lung 4D CT

To place our contributions in context, we explain the existing protocol in use at

Washington University in St. Louis Radiation Oncology. The traditional approach

to 4D CT uses an external belt measurement to label each image acquisition with

a breath phase. A lung reconstruction at a particular breath phase is then created

by combining slabs with similar breath phases and changes are extracted by tracking

tissue motion through reconstructions.

3.3.1 4D CT Lung Data

4D CT image acquisition protocols can vary considerably; however, a necessary com-

ponent is that there be multiple images of the same lung area during patient breathing.

In our image acquisition protocol we acquired images from 25 lung cancer patients.

Transverse volumes of the lung were acquired using a 16 slice CT scanner in cine

mode while the patient was free breathing. At each couch position, 25 slabs (512

by 512 by 16) were collected consecutively, before moving the patient to the next

couch position and collecting 25 slabs of the next section of lung. Since slabs were

acquired during multiple breaths with each scan separated by several seconds, they

are effectively unordered with respect to breath phase. Manual inspection was used

to crop slabs to the smallest rectangular volume which contained lung tissue at any

point in the breath cycle. The transverse plane was down-sampled from the original

by a factor of 3. There was no downsampling in the superior-inferior axis. On average

the downsampled data volume used for processing was 70 by 130 by 176 voxels.
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3.3.2 Breath Phase of Slabs

During image acquisition, an external breath measure was collected using a belt

measuring chest circumference. Figure 3.4(a) shows the belt measurement for each

image: the x-axis shows the position of the slab in the lung, while the y-axis gives

the value of the belt measurement for a particular slab. The size and hue of the

dot corresponds to the value of the belt measurement and therefore, in this case, is

exactly equivalent to the y-axis.

3.3.3 Constructing Lung Volumes

To construct a 4D lung model each slab must be labeled with its breath phase. A

lung image of any part of the breath cycle can be generated by selecting a slab from

each couch position with similar breath phase (as previously shown in figure 3.3).

We generate a discrete model of the 4D lung by creating 8 volumes at equally spaced

intervals through the breath space starting from exhalation and going to inhalation.

The distribution of how long a patient spends in each part of the breath is calculated

by counting the number of slabs from each couch position whose breath measure

value is closest to each volume. We label the volume with the largest number of slabs

associated with it as the central volume. This volume tends to be near exhalation,

since people tend to spend a longer portion of their breath cycle near an exhaled

state.

We create a mask for each volume which specifies whether a specific voxel is part of the

lung or not. A simple threshold of all voxels below the value of -200 Hounsfield Units

(HU) partitions air filled spaces from denser tissue. To distinguish external air from

internal air we estimate a location within each lung and flood fill all voxels connected

to these points. This gives an initial mask of the lung which excludes outside air and

small air filled structures within the lung. Image morphology operations are used to

include the small air filled structures. The mask is dilated1 and then immediately

1dilated – a new volume is created where every voxel is the maximum of its neighboring voxels
in the old volume. Hence a voxel is in the mask if all of its neighbors in the old volume were in the
mask.
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eroded2 by a small circular operator. This procedure has the effect of smoothing edges

and removing small misclassified sections within the lung. All subsequent operations

use this mask so as not to average voxels inside the lung with those outside of it.

3.3.4 Tracking Tissue Motion

A model of lung tissue movement during breathing can be generated by tracking

motion through the reconstructed volumes. A template tracking approach is used

between adjacent pairs of reconstructed volumes. We place a grid over the source

volume Is and track tissue motion at each node using a 7 by 7 by 7 template centered

at the node location ~̀ = (`1, `2, `3). The template is compared to volume patches

around the same location in the target volume It. We find the vector ~v, within a

small search space of ±3 by ±3 by ±4, which minimizes the sum of squared difference

between the template and the volume patch at location ~̀− ~v.

arg min
~v

3∑
k1=−3

3∑
k2=−3

3∑
k3=−3

(
Is(~̀+ ~k)− It(~̀+ ~k − ~v)

)2
(3.1)

The vector ~v is the movement of the tissue centered at ~̀ in the source volume. Dur-

ing this tracking we only consider voxels that are within the mask of the lung and

normalize the sum by the number of voxels which are part of the lung.

To track tissue throughout all the reconstructed volumes we track the tissue movement

between pairs of reconstructed volumes moving outward from the central volume.

First, the central volume is set as the source volume and an adjacent neighbor is

the target volume. After tissue is tracked in this pair, the old target volume is

set as the source volume and the next adjacent volume further from the central

volume is set as the target volume. This continues, moving outward from the central

volume, until tissue movement has been tracked throughout all reconstructed volumes.

Figure 3.4(b) shows the movement vectors in a coronal cross-section of the lung near

an inhaled state.

2eroded – a new volume is created where every voxel is the minimum of its neighboring voxels in
the old volume.
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The tracking algorithm has difficulties in untextured parts of the lung and in regions

displaying the aperture problem, where an edge in the small template region can

be matched to anywhere along a large edge. Additionally, errors in the lung volume

reconstruction stage cause template tracking errors. These problems can be addressed

using the more comprehensive deformation model which we introduce in section 3.5.

3.3.5 Magnitude of Motion

Tissue movement during the entire breath is calculated by placing the vectors from

each reconstructed volume end to end and following them from the central volume

outward. The end point of one motion vector is taken as the starting point in the next

volume. Linear interpolation is used to determine the motion vector at points that

are not directly on the grid. An aggregate vector is created by adding all the vectors

along the path from the central volume to the inhaled state and subtracting the path

from the central volume to the exhaled state. This vector gives the total movement

from exhalation to inhalation of the tissue at a specific location in the central volume.

The magnitude of this vector measures how much movement is present in each part

of the lung. Figure 3.4(c) shows a heat map of this movement magnitude overlaid on

the lung.

3.4 Breath Measure from Imaging Data

The 4D CT lung model presented in the previous section requires an external breath

phase measurement for each slab. In this section, we present an alternative approach

in which a breath measure is automatically computed directly from the CT imaging

data. The estimation of the breath phase of a slab requires several parts.

1. Local Breath Measure - Each couch position is analyzed independently to de-

termine relative positions in the breath cycle for each slab. We call this a local

breath measure. The local breath measures in each couch position are in a

separate coordinate system, which can have an arbitrary orientation and scale.
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(a) External Breath Marker (b) Motion Vectors (c) Total Motion Magnitude

Figure 3.4: The various parts of a traditional 4D CT Lung model (patient 38). (a) The
breath phase (lung volume) as determined by a belt around the patient’s chest. (b)
Vectors showing tissue motion at a breath phase near inhalation. (c) Coronal cross-
section of lung color coded by the total motion magnitude at a particular location:
red sections move more than blue sections.
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The remaining steps are necessary to create a global breath measure, which is

consistent over the entire lung, from the local breath measures.

2. Identify Slabs From the Same Breath Phase - To align local breath measures we

must identify which slabs in neighboring couch position have the same breath

phases. This is accomplished by measuring the boundary discontinuity between

slabs in neighboring couch positions and assuming that slabs with little discon-

tinuity are from the same breath phase.

3. Breath Measure Orientation - We orient the local breath measures in a consistent

manner such that high values correspond to an inhaled state.

4. Determining the Optimal Neighbor Alignment - An alignment between the local

breath measure of one couch position to its neighboring couch position is cre-

ated by finding the linear transformation which best places each slab close to

neighboring slabs with the same breath phase.

5. Global Alignment - A global alignment of all couch positions is created by trans-

forming the local breath measure of each couch position into a single global

coordinate system.

3.4.1 Measuring Breath Phase Within a Couch Position

Although breathing is a cyclic process, we find that images of the lung at the same

lung volume are very similar whether the patient is inhaling or exhaling. This allows

us to characterize the breath with a single parameter: lung air volume. We apply the

Isomap algorithm as described in [84] to the slabs captured at a single couch position,

using the square root of the sum of squared distance (using the k-nearest neighbors

as a neighborhood criteria, with a value of 8 for k). We use the 1D parameterization

produced by Isomap as the local breath measure for slabs computed at a given couch

position. This breath measure is termed fi, and defined as the mapping (computed

through Isomap):

fi : Si → R (3.2)

where Si is the set of slabs at couch position i.
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Figure 3.5: (a) 1 dimensional Isomap parameterization for each couch position of a
single patient. The size and color of the circles represents their externally measured
belt value. A global alignment of these local breath measures is crucial since each
couch position may have a different scale and orientation. (b) 1 dimensional Isomap
parameterization correctly oriented and scaled to be in the range [0,1]. The Isomap
parameterization and belt measurements are more similar in the lower portion of the
lung (scanner position 11) where there is more motion due to breathing.

Figure 3.5(a) shows the local breath measure coordinates generated by Isomap, shown

for different couch positions (labeled on the x-axis). Ground truth estimates (mea-

sured by the extension of a belt around the chest) are depicted by the size and hue

of the points in the figure. This figure highlights that the Isomap parameter has a

high correlation with the ground truth, but the Isomap parameters are sometimes

oriented differently, and the scale also varies. This is because the Isomap algorithm

parameterizes the slabs based on their similarity to each other: there is no global

reference to orient the parameterization, and different parts of the lung have different

overall contrasts changes, creating different relative scales.

3.4.2 Global Breath Measure

Since the local breath measure is only meaningful within a single couch position,

extra work is needed to align the local breath measures to create a globally consistent

breath measure valid over the entire lung. We align local breath measures by a linear

transform to create a single global breath measure.
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As an example of one way of scaling the local breath measures to create a global

breath measure, we naively rescale the range of each local breath measure to be 0

to 1 as shown in figure 3.5(b). If each couch position has a slab from both complete

inhalation and complete exhalation, this would create a consistent global breath mea-

sure. Unfortunately, patients do not breath in a perfectly regular pattern, and for

some couch positions the patients do not reach maximum inhale or exhale. We create

a more effective algorithm by comparing the junction between slabs in neighboring

couch positions. When the slabs were acquired during similar breath phases, their

junction should be smooth. We quantify this smoothness with a discontinuity mea-

sure.

We create a global breath measure in three parts. First, we use the discontinuity

measure to find for each slab the two slabs in neighboring couch positions which are

most likely to be from the same breath phase. Second, the local breath measure in

each couch position is oriented to be from exhalation to inhalation. Third, we find

the affine transformation which optimally aligns the local breath measures so as to

minimize the distance from one slab to its two neighbors in the neighboring couch

position.

3.4.2.1 Measuring Boundary Discontinuities

Slabs with similar breath phases from neighboring couch positions should have little

discontinuity at their junction. Figure 3.6 shows two pairs of slabs. One pair matches

well and is likely to come from the same breath phase while the other pair has a very

discontinuous junction and is not likely to come from the same breath phase.

We denote the set of slabs within the ith couch position from the top as Si. Given

two slabs x ∈ S1 and y ∈ S2 we compute a discontinuity measure over the boundary

between the slabs. We number the transverse slices which comprise the slab x from

top to bottom as x1, x2, · · · , xn. The discontinuity measure is computed by predicting

the slice directly below the upper slab and comparing it to the top slice of the bottom

slab and vice versa as shown in figure 3.6(a). The bottom two slices of x are used to

linearly predict the slice below them which we denote as x− (x− = 2xn− xn−1). This

slice is then compared to the top most slice in y. Similarly, the top two slices in y
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(a) Discontinuity Measure (ρ)

(b) Example Low Discontinuity: ρ = 18

(c) Example High Discontinuity: ρ = 42

Figure 3.6: (a) The discontinuity measure (ρ) between two slabs is created by using
the lower slices of the upper slab to predict what the slice directly below it will
look like (x−) and comparing that slice to the top slice of the bottom slab (y1). The
reverse computation of comparing y+ and xn is also performed and the average taken.
Coronal cross sections of two slabs from adjacent couch positions that come from (b)
the same breath phase (c) different breath phases as determined by the discontinuity
measure.

are used to predict the slice above them (y+ = 2y1 − y2) and this is compared to the

bottom most slice of x. The discontinuity measure ρ is the sum of the `2 distance

between the predictions and the actual slices from the adjacent slab (this is the sum

of squared error of voxel differences).

ρ(x, y) = ‖x− − y1‖+ ‖y+ − xn‖ (3.3)

A small discontinuity measure ρ as seen in figure 3.6(b) gives evidence that the two

slabs were acquired at similar breath phases.

We use the discontinuity measure to create a paired list of matching slabs which are

likely to come from the same breath phase. For each slab x ∈ S1 the two slabs in

S2, yx,1 and yx,2, which minimize the discontinuity measure are found and the pairs

(x, yx,1) and (x, yx,2) are added to the matching slabs list. Conversely, for each slab

y ∈ S2 the two slabs in S1 which are least discontinuous with y are found and the

pairs (xy,1, y) and (xy,2, y) also added to the matching slabs list. This paired list of

matching slabs is used to orient and align the local breath measures. Although we
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presented the algorithm using two matching slabs, we evaluate using between 1 and

5 matching slabs in section 3.4.3.3.

3.4.2.2 Orienting the Local Breath Measures

The local breath measure of each couch position has an uncertain orientation with

respect to inhalation and exhalation. To avoid undesirable local minima in the opti-

mization process, we explicitly orient the local breath measures before optimization.

We first determine the orientation of the local breath measure at the diaphragm,

where it is easy to compute due to the obvious changes caused by the diaphragm’s

motion. This orientation is then propagated outward to orient all local breath mea-

sures.

Since the largest contrast change in the lung images is that between the air filled lung

and the surrounding tissue, the couch position with the greatest contrast change will

be the one which sees the most movement of the diaphragm. At this couch position,

the inhaled position, which contains the least diaphragm tissue, has a low average

voxel value. In the exhaled position, more diaphragm tissue is visible and the average

voxel value will be high. We orient the local breath measure such that a small breath

measure value corresponds to an exhaled state.

The following method is used to explicitly orient all local breath measures to be

consistent with that of the couch position with the diaphragm. For two adjacent couch

positions, determine the correlation between the local breath measures of all pairs of

slabs in the matching slabs list computed in the previous section. If this correlation

is negative, then the local breath measure must be inverted to preserve a consistent

global orientation in which the matching slabs have positively correlated local breath

measure values. Moving outward from the couch position with the most diaphragm

movement, this procedure is repeatedly applied until all local breath measures are

correctly oriented.

We verify the accuracy of the local breath measure orientation algorithm by correlat-

ing the breath measures with the belt measurements. For all but one couch position

of one patient we are able to correctly orient the breath measure, using this method.

The patient on which our image based method fails is breathing erratically and the
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method fails on a couch position where the correlation between the local breath mea-

sure and the belt measurements is 0.05.

3.4.2.3 Aligning Local Breath Measures

A distance measure is defined between slabs as the squared distance between the local

breath measures f1(x) and f2(y) of the two slabs after alignment by the transformation

ψ.

D(x, y) = (f1(x)− ψ(f2(y)))2 (3.4)

The affine transformation which we use to align the coordinate spaces is a function

with two parameters: the scaling value a and the translation value b.

ψ : v 7→ av + b (3.5)

We require a cost function which measures the quality of an aligning transformation

ψ between the local breath measures of two neighboring couch positions. We create

the cost function as the sum of the distance between the transformed local breath

measure coordinates for each slab pair in the matching slabs list. The distances

are normalized by the discontinuity measure to emphasize slab pairs which are good

corresponding matches.

C(a, b) =

√∑
x∈S1

D(x, yx,1)

ρ(x, yx,1)
+
D(x, yx,2)

ρ(x, yx,2)

+

√√√√∑
y∈S2

D(xy,1, y)

ρ(xy,1, y)
+
D(xy,2, y)

ρ(xy,2, y)

(3.6)

To find the parameters a and b of the affine transformation which minimize the cost

function we use sequential quadratic programming, a standard constrained optimiza-

tion algorithm (implemented in Matlab as fmincon).

arg min
a,b

C(a, b), a > 0 (3.7)
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Figure 3.7: (a) Global breath measure created by aligning two couch positions at a
time, moving out from center. (b) Global breath measure created by simultaneously
solving for the transformation of each local breath measure. This is the default
strategy. The first three couch positions are above and at the top of the lung, where
there is not very much motion and the Isomap based breath measure is not very
correlated with the belt measurements (as shown in figure 3.8(a)).

The constraint a > 0 is used so that the transformation cannot invert exhalation and

inhalation for any local breath measure from that which was set explicitly in the last

section. This constraint is necessary to avoid converging to local minima that are

very far from optimal.

3.4.2.4 Aligning all Couch Positions

To create a global breath measure we must place all local breath measures into a

single global coordinate space. We first describe a pairwise alignment strategy and

then a more global strategy.

In the pairwise approach, we start with the middle couch position (position 7 in the

figures) and rescale it to the range 0 to 1. Then, moving outward from this couch

position, we align the local breath measures of each couch position to that of its

neighbor closest to the center. This yields a global breath measure which consistently

describes the breath phase for every slab in all couch positions as shown in figure 3.7.

Instead of the pairwise approach we can simultaneously solve for the a and b values of

the transformation for each couch position. We can additionally constrain the a values

72



www.manaraa.com

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
bs

ol
ut

e 
V

al
ue

 o
f C

or
re

la
tio

n 
C

oe
ffi

ci
en

t

Section of the Lung (top to bottom)

(a) Correlation:
local breath measure and belt

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patient (sorted)

C
or

re
la

tio
n,

 B
re

at
h 

M
ea

su
re

 to
 B

el
t

(b) Correlation:
global breath measure and belt

Figure 3.8: (a) Correlation of the local breath measure for different parts of the lung
and the belt measurements for 25 patients. The lung is grouped into 5 sections from
the top to the bottom. A boxplot of the absolute value of the correlation coeffi-
cient is shown for each section. (b) Correlation of computed global breath measures
to external belt measurements for each patient. Patients are sorted by increasing
correlation.

to have a mean of 1, ensuring that the transformation is not trivial. In section 3.4.3.3

we show that the best method is to solve for all transformations simultaneously and

constrain the a parameters of the transformations to have a mean of 1.

3.4.3 Breath Measure Algorithm Details

3.4.3.1 Physiological Verification of Breath Measure

We compare the global breath measure against estimates of the lung motion captured

by measuring the extension of a belt around the chest of the patient. Figure 3.8(a)

shows the correlation of the breath measure with the belt measurements for all couch

positions of all 25 patients grouped by location in the lung. The correlation is worse at

the top of and above the lung where there is little breath related motion. Figure 3.8(b)

shows the correlation of the global breath measure with the belt measurements for

each patient. The patients are sorted by increasing correlation. These results show

that the data driven method is very similar to the currently in use method based on

the belt measurement.
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(b) Discontinuity Measure of Reconstructions

Figure 3.9: (a) Several different breath measures collected at a single scanner posi-
tion near the diaphragm. This figure shows the similarity between the local breath
measures acquired by the belt measurement, Isomap, and Multidimensional scaling.
LLE does not produce a good breath measure. All breath measures are rescaled
to the range [0,1]. (b) Discontinuity measure for reconstructions based on different
breath measures. Our methods generally have values below one: this means that their
reconstructions are smoother than reconstructions based on a belt measurement.

As another measure of the validity of the algorithm we compare the reconstructed

volumes created using the Isomap based breath measure to volumes based on the

belt measurements. The metric used for comparison is the discontinuity measure

(equation 3.3) across each couch position boundary in the reconstructed volumes.

Figure 3.9 shows the ratio of boundary discontinuity for a reconstruction based on

a particular breath measure to the discontinuity of the reconstruction based on the

belt measurements. Values below 1 mean that the given reconstruction algorithm is

smoother than the reconstruction based on the belt measurements. Patients are sorted

by the ratio for the aligned with penalty term reconstruction. These results show that

using the Isomap parameterization of breathing produces smoother reconstructions

than using belt measurements.

3.4.3.2 Discussion of Local Breath Measures

The reconstruction algorithm hinges on the ability of Isomap to parameterize the

breath phase of slabs. Several methods other than Isomap were investigated. Fig-

ure 3.9(a) shows the breath measures obtained for a single couch position near the
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Figure 3.10: A penalty term is necessary to maintain the range of the breath measure
close to the range 0 to 1 in each couch position. However, this requires finding a value
for the scaling constant α of this penalty term. (a) Large values of α force each local
breath measure to have exactly the range 0 to 1. (b) Optimal α value, as determined
by considering the variation in the output coordinates in figure 3.11(c), creates a
global alignment with a consistent range. (c) Too small an α does not penalize the
collapse of local breath measures onto a single point. Note that this happens even
though we have forced the mean range of the parameters in each couch position to
be 1.

diaphragm by different methods. Multidimensional scaling which is identical to Prin-

cipal Component Analysis (PCA) in this setting and upon which Isomap is based

has a very similar output to Isomap. The small number of slab samples means the

neighborhoods used by Isomap in the graph cover a large area and most pairs of

points are connected through short paths with only 1 or 2 edges. This causes the

graph distances to degenerate into Euclidean distances and Isomap to be equivalent

to MDS. Locally Linear Embedding (LLE) produces a breath measure significantly

worse than the other methods [73]. This is probably due to the small number of

samples at each couch position.

3.4.3.3 Constraining Global Alignment to a Consistent Range

The alignment algorithm can produce differing breath measure ranges between the

ends of the lung. For example, in figure 3.10(c), the couch positions near the top of

the lung have a much smaller range in its breath space than couch positions in the

lower part of the lung.
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We extend the cost function in equation 3.6 to encourage a range of 0 to 1 for the

breath measure by adding a penalty term.

C ′ = C + α
(
(max(fi(Si))− 1)2 + (min(fi(Si))− 0)2

)
(3.8)

Setting the correct value for α is important for creating a global breath measure. Too

large a value will force the range of each local breath measure to be exactly between

0 and 1. Too small a value will allow local breath measures to collapse to a single

point. These problems are apparent in figure 3.10. To find a good value for α, over all

patients, we compare the global breath measure to the belt measurement, and pick

the α which on average gives the breath measure with the highest correlation with

the belt measurement. Each plot in figure 3.11(top) shows for a single patient the

correlation between the breath measure and the belt measurements for varying values

of α and varying number of matching slabs. This figure also shows the discontinuity

measure computed across the couch position junctions in the reconstructed volume

normalized by the same value for a reconstruction based on the belt measurement.

Where the correlation between the breath measure and the belt measurements is high,

we also see that the reconstruction based on the breath measure is smoother than one

based on the belt measurements. Figure 3.12 shows the mean correlation and mean

normalized discontinuity measure over all patients. The three methods considered

are (a) aligning the couch positions in pairs moving outward from the middle couch

position, (b) aligning all couch positions simultaneously without constraining the

mean range in each couch position, and (c) aligning all couch positions simultaneously

while constraining the mean range in each couch position to have a value of 1. The

method with the highest average correlation of 0.943 over all patients constrains the

mean range to have value 1, uses 3 matching slabs for the alignment, and uses a value

of 0.0743 for α. These are the parameter values we use unless specified otherwise.

3.4.4 4D CT Results with Data Driven Breath Measure

We show the 4D CT lung models that result from the algorithms presented in this

section. Figure 3.13 shows various different breath measures for 4 patients. The

first row is the external breath marker provided by the belt and is used as a basis for

comparison, the size and hue of the dots in each figure are proportional to these values.
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(a) Patient 38
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(b) Patient 54
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(c) Patient 56
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(d) Patient 58

Figure 3.11: Top: The correlation between the breath measure for a particular value
of α and the belt measurement for 4 different patients. Higher values indicate that
the breath measure and the belt measurements agree. There are 5 different lines each
corresponding to a different number of matching slabs (found by the discontinuity
measure) used in creating the alignment. Black is 1 matching slab, blue 2, green
3, orange 4, and red 5. The x-axis is displayed in a log scale. Bottom: For the
same 4 patients, we show the discontinuity measure between all junctions in the
reconstruction normalized by the same value for the reconstruction based on the belt
measurements. Lower values indicate that the reconstruction based on the breath
measure is smoother than that based on the belt measurements.
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(a) Pairwise Alignment
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(b) Global Align (unconstrained)
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(c) Global Alignment

Figure 3.12: Three different methods of creating alignments are compared (each in
a column) using two different methods (shown in the rows). In each plot, the five
different lines correspond to different numbers of matching slabs (Black is 1 match-
ing slab, blue 2, green 3, orange 4, and red 5). Top: The correlation between the
breath measure and the belt measurement is plotted. Bottom: The discontinuity
measure between all junctions in the reconstruction normalized by the same value
for the reconstruction based on the belt measurements. Lower values indicate that
the reconstruction based on the breath measure is smoother than that based on the
belt measurements. (a) Couch positions are aligned in pairs moving outward from the
center. (b) All couch positions are simultaneously aligned. (c) All couch positions are
simultaneously aligned and the mean range in each couch position is constrained to
have the value 1. The best combination (in the top row) with an average correlation
of 0.943 is found in plot (c) with alpha value 0.0743 and 3 matching slabs used.
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Figure 3.13: Different breath measures for several patients. Each row is a different
breath measure algorithm; each column is a different patient.
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Unaligned Scaled 0-1 Local Align

No Penalty With Penalty Belt

Figure 3.14: Coronal cross-section image of the reconstructed lung of patient 38. Each
image is at a breath phase relatively close to full inhalation (0.8, where 0 is exhaled
and 1 is inhaled). Note the artifacts in the unaligned reconstruction and that our
final solution “with penalty” is essentially indistinguishable from the method that
requires the external belt measurements.
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Patient 38 Patient 54 Patient 56 Patient 58

Patient 38 Patient 54 Patient 56 Patient 58

Figure 3.15: Movement vectors for several patients. Top: coronal cross-sections.
Bottom: sagittal cross-sections.
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Patient 38 Patient 54 Patient 56 Patient 58

Patient 38 Patient 54 Patient 56 Patient 58

Figure 3.16: The magnitude of motion in patient lungs. Red sections move more than
blue sections. Top: coronal cross-sections of patients. Bottom: sagittal cross-sections
of patients.
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The second row shows the raw Isomap generated coordinates for each couch position

before any alignment is performed. The orientation and scale of the local breath

measure at each couch position is arbitrary and unrelated to any of the other couch

positions. However, these raw Isomap coordinates form the basis for all the other

global breath measures. The third row shows the pairwise alignment strategy without

a penalty term. The breath measure in each couch position is oriented properly and

aligned to its neighbors; however, there is no effort to maintain the breath measure

within a particular range and the breath measure tends to drift or shrink from one

end of the lung to the other. The fourth row shows the pairwise alignment strategy

with penalty term of α = 0.0442 and 1 matching slabs, which is the best strategy as

determined in figure 3.12(a). The added penalty term maintains the range near 0-1.

However, the pairwise alignment strategy does not find as good an alignment as the

global alignment strategy. The fifth row is the global alignment strategy without a

penalty term. The global alignment strategy is able to more effectively minimize the

cost function in equation 3.6. Since this equation does not include a penalty term to

maintain the range 0-1, the drift and scale collapse problem is very pronounced in

some patients. Finally, the sixth row is the global alignment strategy with a penalty

term of α = 0.0743 and 3 matching slabs, which is the optimal alignment strategy as

determined in figure 3.12(c) The penalty term maintain the range near 0-1 and the

global alignment strategy allows the optimization algorithm to more effectively find

the cost function minimum. These are the coordinates which will be used in the next

part of the analysis.

Lung reconstructions at any breath phase can be generated using a breath measure.

Figure 3.14 shows coronal cross-sections of the reconstructed lung generated for a

mostly inhaled breath phase (0.8, where 0 is exhaled and 1 is inhaled). Several differ-

ent breath measures are used to generate these images, the best data driven method

is labeled “With Penalty” and for comparison is placed next to the reconstruction

created with the belt measurements. Although there are differences between the im-

ages, since we are only showing a single coronal cross-section of the 3D volume, it is

very difficult to visually determine which image is better. Additionally, although it is

instructional to look at reconstructions, for evaluation, a quantitative method such as

that in figure 3.9(b) should be used. The strength of a reconstruction should not be

judged solely on discontinuities along the edge of the lung, since the discontinuities
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inside the lung, although more difficult to discern are more important to an under-

standing of tissue motion. In particular, the heart in the lower right-middle section

of each image in figure 3.14 frequently causes discontinuities, which are difficult to

avoid regardless of the method used in the reconstruction. For more context on what

is causing these discontinuities recall that a reconstruction is created by picking the

slab with breath phase closest to a target value, in this case a value of 0.8. Looking at

the corresponding breath measure space for these reconstructions and following along

on a line of value 0.8 the reason for many errors becomes clear, since the line goes

above the entire range for some couch positions (figure 3.13 column 1, row 1, 5, and

6). In the “Belt” reconstruction there are several couch positions with discontinuities

on both their top and bottom portion (for example the couch position containing the

fourth rib from the top). In the “No Penalty” reconstruction the entire top half of the

lung is in a full inhaled state. In the “With Penalty” reconstruction there are some

discontinuities near the top of the lung (third rib from the top) where the breath

measure drifts from full inhalation to near inhalation. In general, our reconstruc-

tions are comparable, and frequently a little smoother, than reconstructions based

on a belt measurement. Additionally, creating a reconstruction similar to the belt

based reconstruction without the use of any external measurements is a significant

contribution with clinical applications.

Figure 3.15 shows images of tissue motion created using the same technique as in

section 3.3.4 except using the global breath measure instead of the belt measurements.

Tissue motion is tracked through 8 lung reconstructions generated by the global

breath measure. Both coronal and sagittal cross-sections of the lung are shown for

each patient. The template matching algorithm functions a little better when applied

to the smoother reconstructions produced by the global breath measure; however, the

problem of ambiguity and problems tracking tissue when discontinuities are present

remain. Since the method presented in the next section addresses these problems we

refrain from an evaluation of the template tracking method.

Figure 3.16 shows the magnitude of motion computed by following motion vectors

through the entire breath phase as is described in section 3.3.5. Sections of the lung

which have more motion are shown in red while parts of the lung with little motion

are in blue. Both coronal and sagittal cross-sections of the lung are shown for each

patient. From these images it is clear that tissue in the lower portion of the lung moves
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Figure 3.17: The optimization procedure for creating a deformation map and reference
lung based model.

significantly more than tissue in the upper lung. These motion maps are useful in

determining the margins which must be placed around a tumor when computing a

radiation treatment plan.

3.5 Free Form Deformation Based Modeling of Tis-

sue Volumes

We now focus on the alternative approach of modeling the lung tissue movement

explicitly with a free form deformation model. This approach allows us to better

leverage redundant information and allow for missing data at particular breath phases.

Figure 3.17 shows the three parts involved in this approach.

We broaden our problem formulation to include problems with more than one cause

of variation. Medical images of moving tissue can be represented as a function I(~x, ~θ)

which captures the intensity of tissue in the image at all spatial locations ~x and poses
~θ. For the 4D CT lung the vector ~x represents the three spatial dimensions of volume

and the pose dimension ~θ is a one dimensional space representing breath phase (or
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θ = 0.04 θ = 0.07 θ = 0.61 θ = 0.85 θ = 0.97

φ = 0.95 φ = 0.41 φ = 0.25 φ = 0.91 φ = 0.27

Sample Images

Reconstruction of Sample Images

Figure 3.18: Image samples and their reconstructions. The reconstructions contain
less noise, since they combine the data from many samples.

lung air volume). Given data samples Si(~x) with pose ~θi we seek a function I(~x, ~θ)

such that I(~x, ~θi) = Si(~x). We create a model I(~x, ~θ) which consists of a reference

lung model and a deformation map.

The algorithm presented in this section is applicable to scenarios other than 4D CT.

As examples, we will use 4D CT data, heart/lung MRI data, and synthetic heart/lung

data. The 4D CT data has 3 spatial dimensions and 1 breath space dimension, the

heart/lung MRI data and synthetic heart/lung data each have 2 spatial dimensions,

1 breath and 1 heartbeat dimension. The synthetic data shown in figure 3.18 will be

used as the main example in the presentation of the algorithm.

3.5.1 Deformation Model

To constrain the data volume I we assume that it is created from an underlying

reference volume Ir which accounts for the appearance of the structure in all spatial

dimensions and a set of free form deformations ~f(~x, ~θ) parameterized by pose ~θ which

account for the motion of the structure during physiological activity. We use cubic
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B-Splines as our free form deformation for simplicity of computation and differen-

tiability and for the finite support of its basis functions. For simplicity, we present

our algorithm using an example with just 1 spatial and 1 pose dimension. A cubic

B-Spline deformation is a continuous piecewise polynomial function, with continuous

first and second derivatives. Each span of the B-Spline can be written as a weighted

sum of separable basis functions.

~f(x, θ) =
4∑

a=1

4∑
b=1

Aa(x)Bb(θ)~wab (3.9)

Aa and Bb are cubic basis functions with joint weight ~wab. These weights can be

thought of as a grid of control points which describe the deformation map. The

dimensionality of the weight vector ~wab equals the number of spatial dimensions in the

model. The deformation takes as input the spatial position and pose of the structure,

and outputs the deformed position of the structure in a reference coordinate system.

The deformed image Id at a pose ~θ is calculated by indexing the reference image Ir

with the deformation map.

Id(~x, ~θ) = Ir(~f(~x, ~θ)) (3.10)

3.5.2 Deformation Model Optimization

The model is defined by three sets of parameters which correspond to the three kinds

of inference problem.

1. The values of the voxels in the reference volume Ir.

2. The parameters of the deformation map ~w~a.

3. The pose estimates ~θi for each sample.

The cost of the model is defined as the reconstruction error of the samples.

C =
∑
Si∈S

∫
(Id(~x, ~θi)− Si(~x))2 dx (3.11)

87



www.manaraa.com

The integral is defined over all the pixels of the sample image Si, which may only be

part of the range of the model.

We analytically compute the derivative of this cost function with respect to both

the weights ~w~a and poses ~θi allowing the use of an efficient solver to compute the

cost function minimum. A standard non-linear solver L-BFGS-B which uses a Quasi-

Newton approach is used to solve for the minimum of the cost function [17]. The

variables over which the solver optimizes are both the B-Spline weights and the pose

estimates. In each iteration a new reference image is solved for directly, given the

current set of pose estimates and deformation map.

3.5.2.1 Basis Weight Derivatives

For clarity we present the following equations for the case with exactly one spatial

dimension and one pose dimension. The gradient of the cost function with respect to

a basis function weight can be computed analytically.

δ

δwαβ
C =

δ

δwαβ

∑
Si∈S

∫
(Id(x, θi)− Si(x))2 dx

= 2
∑
Si∈S

∫
(Id(x, θi)− Si(x))

δ

δwαβ
Id(x, θi) dx

(3.12)

The derivative of the deformed image with respect to the weight of a basis function

can be calculated using the chain rule on equation 3.10.

δ

δwαβ
Id(x, θi) =

δ

δwαβ
Ir(f(x, θ)) =

δIr(f(x, θ))

δf(x, θ)

δ

δwαβ
f(x, θ) (3.13)

The generalized form of the chain rule is required when the model has more than one

spatial dimension; however, this value is still easily computed. The first term of the

product can be calculated directly as an image derivative of the deformed image. The

second part can be calculated from the B-Spline using equation 3.9.

δ

δwαβ
f(x, θ) =

δ

δwαβ

4∑
a=1

4∑
b=1

Aa(x)Bb(θ)wab = Aα(x)Bβ(θ) (3.14)
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Figure 3.19: Reference images of synthetic data in iteration 1, 43, 143, 243, 343, 443,
543, and convergence at 643.

This just picks the basis function which corresponds to the weight wαβ.

3.5.2.2 Pose Estimate Derivatives

The gradient of the cost function with respect to the pose θk of a sample can also be

calculated analytically. Similarly to equation 3.12, the derivative of the cost function

can be calculated; however, only one sample will be non-zero.

δ

δθk
C = 2

∫
(Id(x, θk)− Sk(x))

δ

δθk
Id(x, θk) dx (3.15)

The partial derivative of the B-Spline function with respect to θk requires taking the

derivative of some of the basis functions of the B-Spline.

δ

δθk
f(x, θk) =

4∑
a=1

4∑
b=1

Aa(x)B′b(θk)wab (3.16)

B′b is the derivative of Bb and the fact that B′b is easily computed motivated our choice

of B-Splines to model the deformation.

3.5.2.3 Computing Reference Images

The derivative of the cost function with respect to the reference image is not easy to

compute analytically.

δ

δIr(x0)
C =

δ

δIr(x0)

∑
Si∈S

∫
(Id(~x, ~θi)− Si(~x))2 dx (3.17)

This quantity is dependent on both the method of computing the deformed image

from the reference image and the method of approximating the integral over the
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discrete space of the deformed image. Additionally, having the solver automatically

compute each pixel of the reference image would dramatically increase the number of

variables, making the problem unmanageable. Instead, in each iteration we compute

a new reference image directly from the deformation map and pose estimates.

A reference image can be computed given a deformation map and pose estimates.

Each sample image can be deformed into the coordinate system of the reference

image, using the inverse of the B-Spline deformation. This reference image is optimal

with respect to the sum of squared difference between the deformed images and the

samples, given the deformation and pose estimates. Figure 3.19 shows the evolution

of the reference image as the optimization iterates.

3.5.2.4 Initial Conditions

The identity transformation is used as an initial guess for the deformation. The

initial pose estimates can be measured directly using a physical device, computed

from imaging data using standard manifold learning techniques or for lungs using the

earlier presented breath measure algorithm. Assuming the identity transform as an

initial deformation leads to an initial reference image which is the average of all the

samples.

3.5.2.5 Anchoring the Reference Image

As described so far, the optimization problem is under-constrained, for example, a

shift of the reference image is equivalent to a shift of the deformation map. Fur-

thermore, there is no guarantee that the reference image even resembles the tissue.

This problem can be solved by constraining the reference image to be equal to the

tissue volume at a particular pose which we call the central pose. As the optimiza-

tion proceeds, we add a term which penalizes deviation from the identity map of the

deformation map at the central pose. A large scaling factor on this penalty term can

lead to slow convergence and may adversely effect pose estimates if they are allowed

to change during optimization. Figure 3.20 shows a sequence of final reference images
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Figure 3.20: Final reference images as the deformation is constrained to be closer
to the identity at the central pose. The top row uses the penalty approach which
penalizes deviation from the identity map of the deformation map at the central pose.
The penalty term increases from a low value of 0.125 to a value of 512 in multiples of
8. Bottom: The second row shows results for the faster method of directly fixing the
central control points in the optimization algorithm. From left to right an increasing
number of control points are fixed, starting with none on the left and all control points
in the 3 by 3 grid around the central pose on the right.

for increasing penalty terms; notice that the reference images become rounder and

more like the sample images as the level of constraint on the deformation is increased.

Unfortunately, with increasing penalty, the algorithm takes longer to converge. An-

other method of constraining the deformation map is to fix some of the control points

of the B-Spline. This removes constraints from the solver which speeds up compu-

tation. Unfortunately, since B-Splines do not interpolate control points, this method

does not force the deformation map to be the identity deformation at any particular

point. Figure 3.20 (bottom) shows results for this method.

3.5.3 Results for Free Form Deformation Model

In this section, we show results of our algorithm for three data sets: a synthetic data

set, a 4D CT lung data set, and a 2D heart MRI data set.
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Figure 3.21: Pose estimates (red dots) for synthetic data. Reconstructed images of
specific poses marked with a × are shown.
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Figure 3.22: The mean pixel distance error between the model computed motion and
the ground truth motion between each sample. (a) A variable number of B-Spline
spans over the θ (shifting) and φ (expanding) parameter dimensions is used. On the
x-axis, the number of spans in the θ (shifting) parameter direction is shown, and
the different colored lines represent different numbers of spans in the φ (expanding)
direction. The lowest error occurs when 5 spans are used for θ (shifting) and 1 span
for φ (expanding). The error for 3 spans for each parameter dimension is very close
to this error value. In general, a small number of spans is able to model this dataset
well. (b) The same mean pixel distance error between the model and ground truth is
shown when the anchor penalty is varied between a value of 0 and 32768 (x-axis is in
a log scale).
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3.5.3.1 Analysis of Synthetic Data

We create a synthetic dataset of the heart consisting of two concentric slightly tex-

tured circles which deform in two ways: shifting, which simulates the effects of breath-

ing on the heart, and expansion, which simulates a heartbeat. Each of the 200 sample

images is 60 by 60 pixels and has Gaussian noise added. The Gaussian noise has a

standard deviation which is 5% of the total intensity range of the object. Figure 3.18

shows some sample images and their reconstructions. Figure 3.21 displays the data

volume of this synthetic data. Each black dot represents the location in parameter

space of one of the 2D sample images used as input to the algorithm. At the poses

marked with × we draw the cross section of the data volume I(∗, ∗, θ, φ) computed

by our algorithm. The generating size and positions were chosen randomly and were

not available to the algorithm. Instead, as in real applications, the initial poses were

estimated using Isomap. Since the data was sampled uniformly and independently

in both θ and φ we use Independent Component Analysis to create more meaningful

axes.

For a model with B-Spline control points placed on a 10 pixel grid (6 spans in both x

and y coordinates) with 5 spans over the shifting (θ) parameter and 5 spans over the

expansion (φ) parameter for a total of 10368 parameters, optimization took about 1

minutes on an Intel Core 2 Q9550.

We evaluate the effect of changing the number of spans used in the θ and φ directions.

Figure 3.22(a) shows the average difference between the computed motion and the

ground truth motion (computed within the object) between every pair of samples.

The number of spans in the θ and φ directions are varied between 1 and 7. The

number of spans in the θ direction is shown along the x-axis and the number of spans

in the φ direction is shown as different colored lines. The lowest error occurs when 5

spans are used for θ (shifting) and 1 span for φ (expanding). The error for 3 spans

for each parameter dimension is very close to this error value. In fact, there is little

difference in the error when 6 or less spans are used in the θ (shifting) direction and

3 or less spans are used in the φ (expanding) direction. When 7 spans are used in the

θ (shifting) direction the algorithm does not converge within the maximum number

of iterations (1000 iterations) and hence the error is much higher. In general, a small
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Figure 3.23: Lung reconstructions arranged from exhalation to inhalation. Right:
vectors of tissue movement during breathing.

number of spans is able to model this dataset well, since the motion and deformation

of the object is very simple.

We additionally evaluate the effect of changing the anchor penalty in figure 3.22(b).

With too large an anchor penalty the algorithm takes too long to converge and is

aborted, this significantly increases the motion estimation error. However, apart

from this effect changing the anchor penalty does not change the motion estimation

very much, even though it dramatically changes the shape of the reference image itself

as seen in figure 3.20.

3.5.3.2 Analysis of 4D CT lung

We apply our free form deformation model to the 4D CT lung dataset described in

section 3.3.1. This method allows us to better model the lung tissue by leveraging

the fact that the same tissue is being repeatedly sampled under various deformations.

Initial estimates of the breath phase (lung volume) were provided by a belt measuring

patient chest circumference. Control points were placed every 8 voxels in all spatial

dimensions, and 4 spans were used to model breathing, producing a total of 57,330

B-Spline parameters. The reference image has dimension 56 by 80 by 152 (680,960

voxels). And each of 250 samples has a single breath parameter. So 57,580 parameters

are explicitly optimized for in the solver. Optimization took about 3 hours on an AMD

Athlon 64 3800. Figure 3.23 shows a coronal cross section of the lung at three stages

during exhalation and a vector map showing tissue motion during breathing.

To measure the quality of the deformation model we determine how well the model

is able to register slabs with similar pose estimates. For each of the 250 sample
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slabs we deform the sample slab with pose estimate most similar to it using the

deformation map to account for motion due to breathing. The average voxel-wise

difference between the sample and its deformed nearest neighbor is found to be 15.8

Hounsfield Units (HU) with a standard deviation of 4.0 HU. Hounsfield Units are a

standard unit of X-ray absorption with a value of -1000 through air and 0 through

water (fat has a value of approximately -120, and muscle approximately 40). In

comparison, a direct difference between the sample and its nearest neighbor (without

deformation) is 16.2 HU with standard deviation 4.3 HU. Although the improvement

is small, a two tailed paired t-test over all 250 samples shows that the difference in

mean between the two distributions is significant (p-value 2.1 · 10−4).

3.5.3.3 Analysis of MRI Heart/Lung

Data was captured as 193 frames of an un-gated cardiac MR during free breathing

conditions. Initial pose estimates were computed using Isomap with a modification

for embedding onto a cylinder [70]. Results are shown in figure 3.26. The vertical

translation of the heart due to breathing is visible along the x-axis, while the cyclic

heartbeat is visible along the y-axis. The deformation field along the arrows marked

1 and 2 are shown on the side.

To validate the model we remove 4 samples before optimization (shown in figure 3.24

as red numbers) and evaluate at the poses corresponding to these points. Figure 3.25

shows these samples, their reconstructions, and the estimated motion fields with re-

spect to breathing and heartbeat. Although the images are accurately reconstructed,

since the images vary in part due to blood flow that appears in some parts of the

heartbeat cycle, the deformation field does not always correspond to tissue motion.

For further validation, we run a set of experiments in which each sample is in turn

left out of the optimization. The mean reconstruction error of the left out sample is

on average only 9% higher than the mean reconstruction error of samples left in. For

context, the standard deviation of the normalized reconstruction error for samples

that were left in the model was 39%.
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Figure 3.24: Pose estimates overlaid on reconstructed images showing a regular grid
of poses. Red numbers indicate the location of samples which were excluded from the
model and are shown in figure 3.25.
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1.

2.

3.

4.

(a) (b) (c) (d)

Figure 3.25: (a) Sample excluded from the deformation computation. (b) Recon-
struction at the sample’s pose. (c) and (d) Motion estimate due to breathing and
heartbeat respectively.

98



www.manaraa.com

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Breathing

H
ea

rt
be

at

1

2

1.

2.

Figure 3.26: (Left) Large dots show the pose estimates of the MRI heart/lung dataset.
Reconstructed images are shown at points marked with ×. The arrow 1 and 2 cor-
respond to pose changes along the breathing and heartbeat axes respectively and are
shown on the right side.
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3.6 Conclusion

We provide a framework for modeling moving tissue in medical images. We presented

two main contributions. The first contribution is a breath measure in 4D CT lung

models which is completely data driven and does not require an external belt mea-

surement. This breath measure can be used instead of the belt measurement to create

traditional 4D CT lung models, even in cases where there was no belt measurement

or the belt measurement is inaccurate. Our second contribution was to create a gen-

eral framework for modeling medical tissue motion using a reference volume and a

deformation map. The reference volume represents the underlying structure of the

tissue and the deformation map, which is parameterized by the ways in which the tis-

sue moves (i.e. breathing, and heartbeat), represents the motion of the tissue during

physiological activity. This method simultaneously optimizes three parts: (1) the un-

derlying undeformed appearance of the data volume, (2) the arbitrary deformations

of tissue during physiological activity, and (3) the pose of data samples.
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Chapter 4

Partially Unsupervised Manifold

Learning

Abstract

We consider a special case of manifold learning where, for each point, one (of its few)

low dimensional coordinates is known. The goal of our method will be to parameterize

the manifold by embedding it into a low dimensional Euclidean space such that the

coordinate along one axis is given by the known parameter and the coordinates along

the remaining are statistically independent of the known parameter. The need for

such an algorithm arises naturally in a number of medical imaging applications. A

common situation is that extra meta-data is received during image acquisition, such

as the pose of the camera or information about the state of the object, including breath

or heartbeat phase. We give several different approaches for addressing this problem

based on manipulation of coordinates before applying Manifold Learning, manipula-

tion of a distance or kernel matrix used directly within a Manifold Learning algorithm,

or manipulation of coordinates after applying Manifold Learning. Each approach of-

fers clean formalisms which allow extra information to improve the manifold learning

result.
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4.1 Introduction

Motivated by our work with medical imaging datasets, where extra information such

as belt measurements or heart monitors are available, in addition to medical images,

we look at a more general problem of creating an embedding when part of the desired

output parameterization is known a-priori. Often, this known parameter correlates

with large image changes. For example, in 4D CT data, an external belt measures

the patient breathing and breathing is also the dominant cause of image change.

Our problem is to use knowledge of the parameter to better account for remaining

variations, or equivalently to create an embedding in which the known parameter is

shown on one axis and the remaining variation, which is not accounted for by the

known parameter, is represented on the other axes. We call this problem Partially

Unsupervised Manifold Learning (PUML).

Consider the Conebeam CT images of a live rabbit in figure 4.1. A set of 578 images

are taken from equally spaced, known angles comprising a full circle around a rabbit.

The primary cause of variation in the image set is due to changes in viewing angle.

During image acquisition, the rabbit is breathing and completes a breath cycle once

every several frames. Our goal is to use the known viewing angle parameter to

ignore the viewing angle variation in the images and to better parameterize the much

smaller changes due to breathing. We formalize the following problem: given a set of

N data samples consisting of an input column vector and a known parameter value,

(X•1, a1), (X•2, a2), . . . , (X•N , aN), solve for Z, a low-dimensional parameterization

which best preserves the structure of the high dimensional data, while simultaneously

requiring that the output coordinates be independent of ~a.

Section 4.2 presents related work within manifold learning. Section 4.3 presents the

datasets on which we will evaluate our algorithms. Section 4.4 introduces the notation

we use and gives a detailed problem formulation. Section 4.5 gives a description of

the Isomap algorithm: this algorithm makes use of all the data structures which we

modify to produce PUML algorithms. Section 4.6 presents various approaches to

solving PUML. Section 4.7 shows results of our algorithms on various datasets.
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Long Term Variation Due to Known Camera Angle (578 Frames)

Short Term Variation Due to Breathing (6 Frames)

Figure 4.1: Top: Conebeam CT images of a rabbit. The main cause of variation
in the images is due to the viewing angle change as the camera rotates completely
around the rabbit. Bottom: Images of the rabbit during one breath cycle comprising
6 frames. Although the viewpoint changes a little, the dominant changes in these
images is due to breathing. In the close up images shown below the main images, the
diaphragm of the rabbit can be seen to rise slightly. A horizontal red line is drawn
across the images for comparison.
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4.2 Related Work

Many methods have been developed to work with non-linear manifolds and to do

non-linear dimensionality reduction; a survey of methods is given in [88]. We present

a summary of the major methods available in dimensionality reduction and related

algorithms. We classify all current methods into the following categories: (1) Spring

Networks, (2) Self Organizing Maps, (3) Probabilistic Mappings, (4) Neighborhood

Graph Based Methods, (5) Tangent Space Alignment Methods, (6) Tangent Space

Embedding Methods, (7) Cyclic Manifold Embedding Methods, and (8) Multiple Data

Source Embedding Methods. We will build off the Isomap algorithm when presenting

our PUML algorithms, since Isomap uses each of the data structures which we are

able to modify to incorporate a known parameter into. We will also use Canonical

Correlation Analysis (CCA) directly within our local orthogonalization method.

4.2.1 Spring Networks

The first methods for dimensionality reduction were based on preserving pairwise dis-

tances between points while linearly embedding them into a lower dimensional space.

The linear transform which optimally preserves distances between points is found

by Metric Multidimensional Scaling (MDS) and equivalently Principal Component

Analysis (PCA). Since these methods can only model linear manifolds, many exten-

sions have been proposed to handle non-linear manifolds. These include extending

MDS to use only ordering data and to minimize different stress functions. In general,

these methods can be thought of as solving for the rest state of a network of springs

which represent the distances between points. Such methods are still under devel-

opment; recent work such as DrLIM uses special spring like constructs which either

repel points only when they are close together or always attract points toward each

other [39].
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4.2.2 Self Organizing Maps

Self Organizing Maps (SOM) were an early attempt to model non-linear relationships

between data points [47]. This method lays down a grid of points in the embed-

ding space with each grid point modeling a portion of the data manifold. A smooth

mapping between the manifold and the grid points in the embedding space is then

trained. Generative Topographic Mapping (GTM) extends this method into a prob-

abilistic framework [12]. The grid points in GTM each use a Gaussian distribution

to jointly model the probability that a point in the high dimensional space is on the

manifold.

4.2.3 Probabilistic Mappings

Several methods modify standard PCA using the kernel trick. The kernel trick in its

basic form is the observation that a variety of kernel functions, including the Gaussian

function, can be considered as the inner product between points in a high (possibly

infinite) dimensional space. Since an inner product between points is the only thing

necessary for several algorithms, such as MDS, to function, this has the advantage of

working in a high dimensional space where the data may be more easily separable,

without actually having to compute the location of points in the high dimensional

space. Kernel PCA creates an embedding using PCA except that similarities between

points are computed from a kernel function rather than the standard Euclidean inner

product [77].

The kernel trick is used in the reverse direction in Gaussian Process Latent Variable

Models (GP-LVM) [49, 50]. As in GTM the embedding space directly models the data

manifold. However, instead of a grid of points, each data point has a corresponding

latent variable which models a portion of the manifold based on its position in the

embedding space. The position of the latent variables is computed via an optimization

problem which maximizes the likelihood of the data points given the way in which

latent variables model the manifold. Since GP-LVM only finds local minima, choosing

a good initial position for the latent variables is important. This work has been

extended to simultaneously solve for the intrinsic dimensionality of the manifold and

an embedding [34].
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4.2.4 Neighborhood Graph Based Methods

Most of the remaining methods make use of a neighborhood graph in which each point

is connected to its surrounding neighbors. Usually this is done by connecting each

point to its k nearest neighbors; however, this can also be done in other ways, such as

by connecting all points which are separated by less than ε distance. The weight for

each edge varies by method but is generally related to the Euclidean distance between

the two points. There is a tendency for neighborhood graphs in high dimensional data

to have hub structures in which some data points have many neighbors, while most

have few [71].

One of the most well known manifold learning algorithms is Isomap [84]. We present

this algorithm in more detail in section 4.5. Isomap uses the neighborhood graph to

estimate geodesic distances between points. It assumes that the manifold sampling

is dense enough that each local neighborhood in the graph can be modeled linearly.

The geodesic distances over the manifold are approximated by computing shortest

paths through the neighborhood graph of Euclidean distances. The pairwise geodesic

distance matrix is then used to create point positions in a low dimensional Euclidean

space using metric MDS. This method preserves relationships between far away points

explicitly. Isomap is only guaranteed to recover an accurate parameterization when

the dataset is isometric to Euclidean space and sufficiently sampled [25, 26].

Locally Linear Embedding (LLE) [73] uses local properties to construct an embed-

ding using spectral techniques. First, a weight matrix which optimally reconstructs

the position of each point from the location of its neighbors is found. Second, an

eigenvalue problem is solved to find the embedded points which best preserve the

relationship between points encoded in the weight matrix. This method does not

explicitly preserve any relationship between far away points.

In Laplacian Eigenmaps, the neighborhood graph is computed and the smallest eigen-

vectors of the graph Laplacian used to create an embedding space [9, 92]. This method

produces an embedding where distances between points are related to the expected

number of steps in a random walk between the points in the neighborhood graph

when the distance of the edges is considered as a transition probability. This method
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is the basis for spectral clustering in which k-means is generally run in the embedding

space to create a clustering.

Hessian Eigenmaps (HLLE), also called Hessian Locally Linear Embedding, is a

method analogous to the Laplacian Eigenmaps method but using an estimated Hes-

sian matrix at each data point in place of the graph Laplacian [24]. This method is

particularly well suited to punctured manifolds in which large holes are present.

Maximum Variance Unfolding (MVU) preserves local nearest neighbor distances while

maximizing the total variance of the data points [96, 97]. In effect this takes the

ends of the manifold and stretches them as far apart as possible without tearing the

neighborhood graph of the manifold. This problem is formulated as a semidefinite

program and can be optimized efficiently. Slack variables can be added to allow some

of the local distances to be violated.

4.2.5 Tangent Space Alignment Methods

This class of manifold learning algorithms focuses on aligning local neighborhoods

of the manifold. The first major method of this type, Charting [13], uses a local

manifold dimensionality estimation technique to determine the intrinsic dimension

of the manifold based on its data sampling. A linear representation of each local

neighborhood is created using a maximum a posteriori (MAP) estimate of a Gaussian

mixture model. This method uses more global data in the construction of its local

manifold estimates than simply taking the local PCA space at each location. A

coherent embedding of the whole manifold is created from the local representations

by projecting them linearly into an embedding space such that points which are in

more than one chart are mapped to the same location. Similar methods include

Global Coordination [74] and Local Tangent Space Alignment (LTSA) [105]

4.2.6 Tangent Space Embedding Methods

Another approach is based on picking a central point from which to construct an

embedding space. Logmap uses PCA over the neighborhood of the central point
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to create a tangent space of the manifold at that point [15]. All other data points

are then projected into this tangent space. This is done by determining the polar

coordinates of the point with respect to the center point. The radius from the center

is estimated, as in Isomap, by the geodesic distance in the neighborhood graph. The

direction from the center point is determined by finding the gradient of the distance

in the neighborhood of the center point. This gradient is computed by finding the

geodesic distances to the center point’s neighbors and performing a regression to fit

a plane to these values.

This method is able to tear manifolds which are not homeomorphic to an open disk

and embed them in a plane. Depending on the dataset, this method of dealing with

cyclic structures may be preferable to distorting the entire manifold. Cyclic structures

are simply broken apart at the part of the cycle furthest from the center point. To help

create a clean cut at edge points, Logmap uses Random Sample Consensus (RANSAC)

to perform a robust regression and estimate the direction to the center. A drawback

of Logmap embeddings is their reliance on a single center point. With many manifolds

the quality of the embedding decreases quickly with distance from the center point,

making it difficult to produce a single good embedding of the manifold using this

method. A modification of Logmap constructs a simplicial mesh representation of

the manifold [33] and then positions points far from the central point by preserving

angles within the simplicial mesh [55].

A similar method to Logmap, ExpMap, can be used to apply textures to 3D ob-

jects [76]. This method reasons explicitly about the tangent space at sample points

to convert coordinates from one tangent space to the next. Unfortunately, this ap-

proach is only possible in a three dimensional space, where a 2D tangent plane can

be rotated onto another 2D tangent plane in only one way.

4.2.7 Cyclic Manifold Embedding Methods

Cyclic manifolds present a problem for many manifold learning algorithms. One

method to address this problem is to explicitly determine a set of edges at which to

cut the graph so as to remove cycles. A robust method for creating such a cut removes

all chordless cycles larger than a user specified threshold [51]. Chordless cycles are
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cycles which do not have any edges between nodes except those between neighbors:

they are the discrete equivalent of non-contractible loops. This method has been used

to embed distorted cylinders [23]. In this case a graph is cut, then cloned, and cut

again. The cloning is accomplished by creating two identical cut graphs and replacing

the cut edges with edges which go from one copy to the other. The resulting graph,

once cut again, is embedded using Isomap.

Other methods are geared directly towards parameterizing cyclic manifolds. Some

work has been done on parameterizing manifolds of any genus by coordinates along

handle and tunnel loops [22], parameterizing manifolds with non-Cartesian latent

space in back constrained GP-LVM models [86], and parameterizing spherical mani-

folds [70]. Our PUML algorithms are able to compute over a manifold in which the

known parameter is cyclic, even when the host manifold learning algorithm (such as

Isomap) does not support cyclic parameters.

4.2.8 Multiple Data Source Embedding Methods

There are several Manifold Learning algorithms which consider more than one data

source. Canonical Correlation Analysis (CCA) addresses a multiple manifold embed-

ding problem in a linear setting [6]. The approach of CCA, using techniques similar

to MDS and PCA, finds two matrices which linearly transform the input spaces so

that they are most correlated in a small number of dimensions. The result is a low

dimensional embedding space into which there is a mapping function from each in-

put manifold. CCA has been extended to a non-linear formulation which seeks a

consistent, non-linear transformation of the input manifolds into a common space.

Approaches have been based on the GP-LVM framework [29, 52] and on Laplacian

Eigenmaps [91]. We solve a similar problem where instead of trying to find an em-

bedding of the manifold which is most correlated with the known parameter, we try

to find an embedding of the primary manifold which is independent of the secondary

manifold (which we call the known parameter) but still preserves structure within the

primary manifold.

Another example of a related problem is colored Maximum Variance Unfolding, which

takes as input both points from a manifold and a class label for each data point [81].
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Extra constraints are added to the normal MVU formulation to find the embedding

which best preserves the ability to distinguish between different label classes. This

has the effect of reducing the dimensionality of the data space while still preserving

the ability to cluster the data. The problem of creating specially tuned embeddings

based on label information has also been studied in the context of kernel learning [56].

In our time sequence analysis, we remove long term trends to allow the extraction

of repetitive short time scale variations. The reverse problem of extracting the gen-

eral trend has been studied to determine the effect age has on brain shape in MRI

scans [21].

4.3 Datasets

The PUML problem is motivated by problems in applying manifold learning to natural

image data sets. This section introduces the 3 datasets shown in figure 4.2. Each

dataset has a known parameter which is acquired in tandem with the dataset. The

dataset varies due to both this known parameter and secondary variation. For each

dataset a ground truth value for the secondary variation is also acquired.

The first example is from a Conebeam CT scanner in which images of a live rabbit

are captured from 578 equally spaced angles comprising a full rotation around the

rabbit. The rabbit is breathing during image acquisition, completing a full breath

cycle once every few frames. This dataset has a cyclic dimension because the CT

scanner completes an entire rotation around the rabbit. We show results on both

the full dataset and a set of 144 images comprising a quarter of a circle around the

rabbit. The known parameter is the rotation angle of the CT scanner from which the

image was acquired (rescaled to the range [-1,1]). The ground truth for the secondary

variation due to breathing was determined by manually marking the position of the

diaphragm in each image.

The second dataset is a sequence of images from a short axis echocardiogram of the left

ventricle of the heart. This data set varies due to “camera drift” (as the ultrasound

probe is somewhat unsteady), and due to the heart phase. Ground truth for the heart

phase was determined by manually measuring the width of the ventricle from left to
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Figure 4.2: First row: A Conebeam CT of a breathing rabbit. This is a 2D manifold
with projection angle and lung volume as dimensions. Second row: The left ventricle
of the heart as seen in a short axis echocardiogram. Third row: A kestrel in flight
with its head registered to approximately the same position and size in each frame.
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right and from top to bottom and adding these two numbers. The beating is very

fast compared to the time scale of camera drift; thus, this dataset was included to

explore cases where, over long time intervals, the time of image capture serves as a

good proxy for the distracting variable.

The last dataset is a video sequence of a kestrel in flight. This was registered so that

its beak maintains a relatively fixed position. This dataset is included to explore the

situation when there are many remaining degrees of freedom, including the position of

both wings, the tail, and the pitch of the body. The known parameter is the timestamp

of the video frame, which again serves as a proxy for the distracting variable. Ground

truth is determined by measuring the vertical position of the bird’s right wing.

4.4 PUML Problem Formulation

The problem formulation for PUML is as follows. Given a set of N data samples con-

sisting of an input column vector and a known parameter value, (X•1, a1), (X•2, a2), . . . ,

(X•N , aN), solve for Z, a low-dimensional parameterization which best preserves the

structure of the high dimensional data. We use a dot notation to mean all entries in

a column or row of the matrix: Z•j are all the low dimensional embedding coordi-

nates of a particular sample j, while Zi• is the row vector consisting of the ith low

dimensional embedding coordinates for all the samples. In our problem formulation

we further require that the coordinate of the samples in each output dimension Zi•

be independent of ~a.

argmin
Z

∑
(i,j)∈E

∥∥∥dij − ‖Z•i − Z•j‖∥∥∥2 and ∀k, Zk• independent of ~a (4.1)

In this equation, dij is the distance between samples i and j in the input data.

Although this might be Euclidean distance, it can also be measured in different ways,

such as an estimate of geodesic distance over the input manifold. The set E over which

the sum is computed consists of all samples which will be compared: this set might

be every pair, or it might only include neighboring pairs of samples. For the Isomap

algorithm, E is the set of every pair of samples and dij is computed as the shortest

path distance between samples in the neighborhood graph. The last part is that
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Figure 4.3: (A) The Euclidean distance (dotted blue line) between two points is not
constrained to lie within the manifold and hence does not reflect the true structure
of the data. The geodesic distance (solid blue line) is the shortest path between two
points within the manifold. (B) In Isomap, the geodesic distance is estimated as
the shortest path distance between two points in the neighborhood graph. (C) The
Isomap embedding of the data in two dimensions is shown with the shortest path
distance and geodesic shown. This figure was taken from [84].

the output coordinates should be statistically independent of the known coordinates.

This slightly abuses notation by considering both Zi• and ~a as single random variables

instead of as vectors of samples chosen from those random variable. In our approach

we will use different methods to create coordinates which are independent of ~a. For

example, the global orthogonalization method replaces the independence criteria with

decorrelation, which is explicitly enforced.

4.5 Isomap Algorithm

The algorithms we present are modifications which must be added to other Manifold

Learning algorithms to produce a complete algorithm. We use as an example the

Isomap algorithm, for its effectiveness, simplicity, and use of all the data pieces which

we are able to modify to create a PUML algorithm.

The essence of the Isomap algorithm is the use of metric Multidimensional Scaling

(MDS) on a modified distance matrix which estimates the geodesic distance between

points in the input manifold instead of direct Euclidean distance.

The first part of Isomap is to estimate the geodesic distance between points. A

geodesic is the shortest curve between two points which remains on a manifold. Since
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the manifold is curved in high dimensional space, the geodesic will generally be a

curve. Figure 4.3 shows the difference between direct Euclidean distance in the high

dimensional space and geodesic distance between two points. Isomap begins by finding

the nearest neighbors of every point in the dataset (we will assume k nearest neighbors

are used). A neighborhood graph is created in which neighbors are connected with

edges of length equal to the Euclidean distance between them. The intuition is that

locally on a manifold the space is flat and Euclidean distance estimates the geodesic

distance well. However, between points that are far away, the geodesic distance

between points is very different from the Euclidean distance. An estimate of the

geodesic distance is computed as the shortest path distance between two points in

the neighborhood graph. The matrix D is constructed where the entry dij is the

shortest path distance between sample i and j.

This distance matrix is then converted into a kernel matrix (also called a similarity

matrix) K by multiplications with the centering matrix H.

K = HD2H (4.2)

Hi,j =


1− 1

n
, i = j

− 1

n
, i 6= j

(4.3)

n is the number of samples. If D is a true distance matrix in which distances are

non-negative and the triangle inequality holds, then the matrix K is a positive semi-

definite matrix which can be decomposed asK = Y TY . The output coordinates Y can

be solved for using an eigenvector decomposition of the matrix K. The columns Y•i of

Y are generally arranged in order of decreasing corresponding eigenvalue which means

they have the property that the first m columns of Y have the optimal reconstruction

of K of any rank m matrix. These are the output coordinates of Isomap.

4.6 PUML Methods

Each of the presented methods modifies the data at a particular stage of the Isomap

algorithm. Figure 4.4 shows a diagram of the stages of the Isomap algorithm on the
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left and at which stage each of the PUML methods which we will present modify the

data.

Section 4.6.1 presents an algorithm which modifies the computed distance measures

by observing that a portion of the distances should depend on the known parame-

ter, and a portion on unknown factors. Section 4.6.2 modifies this approach to be

used within the local neighborhoods of points. Section 4.6.3 presents an algorithm

which post-processes a parameterization to find variation in the dataset which are

independent of the known parameter. Section 4.6.4 changes the distance measure in

local neighborhoods to make them independent to changes in the known parameter.

Section 4.6.5 performs pre-processing to remove the long term trends in the dataset

before obtaining a parameterization using a standard manifold learning method.

Of the methods which will be presented, the trend subtracted PUML method (pre-

sented in section 4.6.5) is by far the most effective; however, the other methods are

provided for context and motivation. Each method is evaluated in section 4.7, which

also provides a visualization of which pixels in the images are most responsible for

variation in the dataset.

4.6.1 Kernel Modification by Distance Subtraction

Our first approach to PUML modifies the distance matrix to create a new distance

matrix which is independent of the known parameter. We start with the intuition

that the distance between points in the embedding space can be explained using

a right triangle, as displayed in figure 4.5. One of the legs of the triangle is the

distance between points in the known parameter, the other is the distance in the

output embedding, and the hypotenuse is the observed distance between samples dij.

We assume that the distance between samples is composed of two orthogonal parts,

one dependent on the known parameter coordinates of the samples ai, the other on

the remaining unknown output coordinates Z•i as shown in figure 4.5. The distance

matrix of the known parameter Da consists of pairwise distances between samples in

known coordinates. Similarly, we write the observed distance matrix as D and the

distance matrix between points in output embedding space Z as Dz. The Pythagorean
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Figure 4.4: Flowchart depicting the different PUML methods presented in this chapter
(in red). Boxes represent data types, while arrows are algorithms. Isomap starts
from the input coordinates, computes a distance matrix by estimating the geodesic
distances by shortest path in the neighborhood graph and then converts this to a
kernel matrix which is used to produce output coordinates through an eigenvector
decomposition. Each of the presented methods adds a piece to one of the steps in
this algorithm.
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Figure 4.5: The distance between two points can be decomposed as a known distance
based on the points known coordinates, and an unknown distance orthogonal to the
known distance.

theorem requires that the following equation hold.

D2
z = D2 − αD2

a (4.4)

The square of the unknown distance is the square of the measured distance between

points minus the square of the known distance between points. We assume that we

know Da up to a scaling factor α. The scaling factor is necessary because the known

parameter is in a different coordinate system than the data is in.

We transform the distance matrix Db into a kernel matrix Kb as outlined in the last

section. If the distances come from a Euclidean space, then Kb will be a positive

semi-definite matrix. Unfortunately, for large unknown scaling factor α, the resulting

matrix Kb may not be positive semi-definite.

Kb = K − αKa (4.5)

Finding the correct α can be done by analyzing the eigenvalues of the matrix Kb.

We wish to remove the degrees of freedom corresponding to an entire dimension in

the input coordinate system, since it is assumed that the known parameter accounts

for this freedom. This means that the rank of the kernel matrix must be reduced by

one and consequently that we need to set α so that an eigenvalue becomes zero. In
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practice, it is easier to minimize the sum of the squared eigenvalues of Kb which is

equivalent to the trace of K2
b .

arg min
α
tr(K2

b ) s.t. Kb = K − αKa (4.6)

Alternatively, a constant term can be added to a non-semi-definite matrix to create

a semi-definite matrix as is done in kernel Isomap [19]. Notice that although we

have motivated this algorithm by considering distances, the algorithm itself can be

performed directly on the kernel matrix. We call this method global subtraction, in

contrast to the local subtraction method in the next section.

Figure 4.6(c) shows the result of applying this method to a bent helicoid-like manifold.

The known parameter is the distance from the centerline of the helicoid, and the

secondary variation, shown in color, is the distance along the centerline. Global

subtraction is able to produce a better parameterization than Isomap given the known

parameter. A more detailed analysis on multiple datasets is given in section 4.7.

4.6.2 Applying Distance Subtraction Locally

In the last section we modified the distance matrix as a whole, after the shortest

path computation in Isomap (see section 4.5). This lead to an algorithm which works

directly on the kernel matrix. However, we can do distance subtraction before the

shortest path computation as well. The motivation for doing the distance subtraction

at this stage is that it is more likely that the triangle considered in figure 4.5 is correct

at a local scale, where each of the edges are a direct distance between neighbors, rather

than a shortest path computation through many hops in the neighborhood graph.

As before we subtract distances; however, we now think of D, Da, and Dz as all pairs

Euclidean distance, rather than geodesic distances.

D2
z = D2 − αD2

a (4.7)

Geodesic distances are then estimated by a shortest path distance through the neigh-

borhood graph, using the modified distances of Dz. This matrix is then converted

into a kernel matrix, and coordinates extracted by an eigenvector decomposition in
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(a) Bent Helicoid-like Manifold
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(c) Global Subtraction PUML Method
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(b) Isomap Embedding

●

●

●

●
● ●

●

●

●● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●● ●
●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

● ●●
●

●
●

●

●

●

●
●

●
● ●

●
●

● ●
●●

●
●

●
● ●

●

●

●
●

● ●
●

●
●

●

●
●

● ● ●

●

● ●●●
● ●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●
●

● ●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●●

●● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

● ●

●

●
● ●

●
●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●● ●
●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

● ●

●

●

●●

●● ●

●

●

● ●

●

●

●
●

●

●
● ●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

−0.5 0.0 0.5

Known Parameter

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

P
ar

am
et

er
 1

Local Subtraction

(d) Local Subtraction PUML Method

Figure 4.6: Local and global subtraction methods applied to a bent helicoid-like man-
ifold. The known parameter is the distance from the center line of the helicoid, while
the secondary variation, shown in color, is the distance along the center line. (b) For
comparison the Isomap embedding of the manifold is shown. (c) Global subtraction
as described in section 4.6.1. (d) Local subtraction as described in section 4.6.2.
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(a) Isomap
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(b) Isomap Coordinate 1
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(c) Isomap Coordinate 2

Figure 4.7: (a) X-ray images of a rabbit cropped around the lung taken from various
angles (spanning π

2
radians) are embedded in a two dimensional space using Isomap.

(b) The first and (c) second Isomap parameter is plotted against the viewing angle.
The color in all plots is ground truth diaphragm position.

the normal way. We term this algorithm local distance subtraction, in contrast to the

global distance subtraction method of the previous section.

In figure 4.6, the results of applying local subtraction to the synthetic bent helicoid-

like manifold are shown. This method is also able to parameterize the remaining

variation, given the known parameter. A more detailed analysis on multiple datasets

is given in section 4.7.

4.6.3 Orthogonalized Manifold Learning

We now turn our attention to methods which post-process the output coordinates

produced by a manifold learning algorithm to produce coordinates independent of

the known parameter. Without special action a manifold learning algorithm will

parameterize all relevant sources of variation, including both variations which are

dependent on the known parameter and those that are not. Figure 4.7(a) shows the

Isomap embedding of the rabbit over π
2

radians dataset. We will denote the Isomap

coordinates by Y. Also presented are two plots of the first and the second Isomap

parameter against the known parameter. Notice that Y1• the first Isomap param-

eter correlates almost perfectly with the known parameter ~a. Isomap is providing

information which we already have available. We are much more interested in the
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second Isomap coordinate, which parameterizes variation in the dataset which is not

captured by the known parameter.

In the problem statement shown in equation 4.1, we wish to find output coordinates

which are independent of the known parameter. In the orthogonalization approach we

replace this criteria with decorrelation, a necessary condition for independence. The

desired output coordinate, Zi•, should not be correlated with the known parameter

~a. This is accomplished by ensuring that the vectors Zi• are orthogonal with ~a.

Given a set of output vectors Yi• of coordinates as produced by Isomap, we can

generate orthogonal vectors by orthogonalizing the following matrix.

A =
(
~a Y T

)
(4.8)

The Gram-Schmidt process can be used to create a new matrix B in which each

column is orthogonal to every other column and to ~a.(
~a BT

)
(4.9)

The Gram-Schmidt process is an iterative algorithm where the first step is to project

each column onto the first column and subtract that projection from it, thus orthog-

onalizing each column with respect to the first column. The next iteration orthog-

onalizes each column right of the second with the second. This process continues

until all columns are orthogonal to each other. It is common to also normalize each

column during this algorithm; however, this should not be done in our application

since the relative importance of each column should be maintained throughout the

process. This produces a new matrix where every column Bi• is orthogonal to every

other Bj• and also orthogonal to ~a.

After the orthogonalization process, the first component B1• might have very little

variation left. This is the case for datasets like in figure 4.7, where the first Isomap

coordinate Y1• is almost perfectly correlated with ~a. We use Principal Component

Analysis (PCA) to compute the components in B which have the most variance

remaining. This is equivalent to computing a new kernel matrix as the inner product

of B: K = BTB. The eigen decomposition of K yields the final output coordinates
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Figure 4.8: The result of orthogonalization on the same dataset as figure 4.7. Left:
only a first order component is removed through orthogonalization. Notice the similar-
ity between this output and the original second Isomap parameter in figure 4.7(bottom
right). Right: a first and second order component is removed.

Z which are now not correlated with the known parameter ~a. Figure 4.8 shows the

output for the same manifold as figure 4.7.

4.6.3.1 Higher Order Orthogonalization

We motivated the last section by observing that decorrelation is a necessary condition

for independence and ensuring that the output parameters are not correlated with

the known parameters. However, the condition of independence implies that there

are also no higher order correlations present. In this section, we extend the concept

of orthogonalization to remove higher order correlations. We use the same Gram-

Schmidt orthogonalization process, but add higher order terms.

A =
(
~a ~̂a2 · · · ~̂an Y T

)
(4.10)

Where ~̂a = ~a − ~a denotes a vector minus its mean (and ~a already has mean zero).

After orthogonalization we obtain a matrix B in which each column is orthogonal and
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decorrelated with ~a to the nth degree. As with the previous method, we use this ma-

trix to create a new kernel matrix, and an eigen decomposition to produce the output

coordinates Z. Figure 4.8(right) shows results for second order orthogonalization on

the rabbit over π
2

radians data.

4.6.3.2 Windowed Orthogonalization

In this section, we take a different view of the condition of independence. We note

that a necessary condition for independence is to not be correlated over any set of

samples. We break down the dataset into windows of samples. In each window,

the output coordinates of those samples should not be correlated with the known

parameters. Gram-Schmidt orthogonalization performed on the following matrix will

ensure that this is true.

̂~a(1..N
2

) ~0

~0
̂~a(N
4
..3N

4
) Y T

~0

~0 ̂~a(N
2
..N)


(4.11)

By changing the window sizes and window overlap, trends over the known parameter

occurring at different scales are found and removed, leaving a signal independent of

the known parameter. Higher order terms can be used in the same way as earlier. In

figure 4.9 we can see that this method can be effective, but also creates artifacts at

the edges of windows.

A danger when using this method is that the data will be orthogonalized with respect

to too many different vectors. Each orthogonalization vector spans a portion of the

data space, given enough such linearly independent vectors, any data vector can be

represented. When the dataset is orthogonalized with respect to too many vectors,

all variation within the dataset is removed, including the variation of interest. This

can be particularly problematic when using higher order terms, since even only using

second order terms for each window doubles the number of vectors being used in the

orthogonalization.
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Figure 4.9: The rabbit dataset over all angle views. (a) Isomap parameterization.
(b) Windowed first order orthogonalization over large windows causes discontinuity
artifacts along the ends of the windows (the windows overlap such that every sample
is within 2 windows). (c) Under the right conditions windowed orthogonalization
removes the dependence of the output coordinates on the known parameter. In this
example, third order orthogonalization is used over 12 windows in which each sample
is within 3 windows at once. In this case, windowed orthogonalization is able to
recover a breath signal, which is visible because the y-axis now captures some of the
color variation (which encodes ground truth breath phase).

(a) Pick Neighborhood (b) Find Correlation Direction (c) Remove Projection

Figure 4.10: The steps of the local orthogonalization algorithm. (a) A neighborhood
graph is computed and for each local neighborhood the following steps performed. (b)
The local neighborhood is oriented such that the direction most correlated with the
known parameter is from left to right. (c) the points are projected into the subspace
not spanned by the direction most correlated with the known parameter. These new
distances should be independent of the known parameter.
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Figure 4.11: Output coordinates for the local orthogonalization method. Left: The
local orthogonalization results on the rabbit data set over all angles. The method is
unable to deal with a cyclic dataset. The cyclic known parameter is shown on the
x-axis within the range [−1, 1], with the left side looping to the right side. Right:
The rabbit over π

2
radians of angle (shown on the x-axis in the range [0.16, 0.66]).

Due to the systematic bias in computing shortest paths in the neighborhood graph,
the output of this method is still highly correlated to the known parameter (although
less correlated than standard Isomap).
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4.6.4 Applying Orthogonalization Locally

Similar to the local distance subtraction method presented in section 4.6.2, we can

apply orthogonalization locally within each neighborhood, to create a new distance

matrix. Instead of trying to subtract the known distances directly, we use CCA to

determine a direction in each neighborhood correlated with the known parameter and

remove variation in that direction using orthogonalization.

We begin by computing the neighborhood graph. For each point’s neighborhood, we

find the direction most correlated with the known parameter. The points are then

projected into the subspace not spanned by this direction. Figure 4.10 depicts these

steps. The newly created distances should now be independent of the known coor-

dinates within each neighborhood. The new distance matrix can then be converted

into a kernel matrix and finally output coordinates in the usual manner. Since dis-

tances are only computed for neighbors, the original neighborhood associations must

be used.

As a preprocessing step, to remove noise we run PCA on the neighborhood to reduce

it to the number of dimensions in the embedding space. This forces the CCA direction

to be within the tangent space of the local neighborhood. As a side effect, this solves

the tendency of CCA to overfit in high dimensional spaces.

Unfortunately, the created distances are not completely independent of the known

parameter (figure 4.11). The main reason for this is that even if each local distance

measure is independent of the known parameter, there will be some noise within the

measure and this noise accumulates when measuring distances along shortest paths

in the neighborhood graph. Since, long distances correspond to paths through the

graph with many edges, the accumulation of noise is proportional to the distance

between points in the original graph which was dependent on the known parameter.

This systematic bias causes the output parameter to be correlated with the known

parameter as seen in figure 4.11(right).
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Figure 4.12: Left: The first Isomap parameter of the rabbit over all angles plotted
against the known parameter overlaid with a kernel regression curve. Middle: The
same Isomap parameter with the kernel regression curve subtracted to highlight vari-
ations not due to angle changes. Right: The first Isomap parameter when the rabbit
data has been preprocessed by subtracting the weighted local average image in known
parameter space from each image.

4.6.5 Trend Subtracted Manifold Learning

With orthogonalization, in attempting to decorrelate coordinates from the known

parameter, we have essentially modeled the dependence between the known parameter

and the manifold using linear and low order polynomial curve segments. Instead of

curve segments we focus on using kernel regression to model the dependence between

the known parameter and the manifold in a smoother and more adaptable way. A

Gaussian kernel is used to compute the weighted average of points in the first Isomap

parameter (figure 4.12(left)). This smooth curve is subtracted from the original data

to highlight the secondary variation (figure 4.12(middle)). Although not perfect, this

method does not suffer from the discontinuities created in windowed orthogonalization

and does not require careful parameter setting.

Additionally, instead of performing the kernel regression on the Isomap parameteriza-

tion, we can perform it on the input data beforehand. This means that we pre-process

each image as the original image minus a weighted average of the surrounding images

(in the known parameterization) and then perform standard manifold learning on

these new images. The width of the kernel used determines which structures in the

data will remain. In section 4.7.1 we present a method for choosing an appropriate

kernel width.
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(a) Data Images (b) Trend Images (c) Trend Subtracted

Figure 4.13: The input images for trend subtracted PUML on two data samples from
the kestrel dataset. (a) The original data acquisition images. (b) A Gaussian kernel
blurred image in known parameter space around the sample image. For this dataset,
this is a time blurred image which captures the general aspect of the bird. (c) The
difference between the two images, this image highlights changes in the image which
are independent of the known parameter, in this case time. For the top image, this
highlights the wing position being in a middle position and the tail being in a slightly
lower than average position. For the bottom image, this highlights a wing position
slightly higher than average and a tail position slightly lower and wider than average.

After this preprocessing step, the primary variability in the dataset should be inde-

pendent of the known partial coordinates. If needed, orthogonalization can be used

to correct any remaining correlation with the known parameter. We call this method

trend subtracted PUML. Of the methods presented in this chapter, this is the most

effective.

In summary, this method has the following steps.

1. For each sample image, compute the weighted average of the nearby neighboring

images in known parameter space. With a Gaussian kernel, this is effectively a

Gaussian blur through known parameter space of the images. This image cap-

tures the trend of the image with varying known parameter. Figure 4.13 shows

a sample image, its Gaussian kernel blurred equivalent, and their difference for

the kestrel dataset.

2. For each sample image, the difference between the blurred trend image and the

sample image is computed. These images mainly incorporate variations which

are independent of the known parameter.
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3. Isomap, or another manifold learning algorithm, is run on these difference im-

ages to produce output coordinates. These coordinates should be independent

of the known parameter.

4. Optionally, global orthogonalization is run on the output coordinates to produce

new coordinates which have zero correlation with the known parameter.

4.7 Results

Figures 4.14 through 4.19 show results of running the PUML algorithms on a number

of different datasets. In each plot the color of the dots correspond to the ground

truth parameterization value. In general, the results of running the distance sub-

traction methods (both global and local), and the global and local orthogonalization

algorithms is very similar to plotting the first Isomap parameter against the known

parameter (shown on the left in the second row). The windowed orthogonalization

methods frequently finds a different signal within the data, however, it also has the

tendency to introduce discontinuities at the edges of the windows. The trend subtrac-

tion method works the best of all the presented methods and finds a signal similar to

ground truth for all the datasets.

We now describe in more detail the results for each dataset. Figure 4.14 shows results

for a synthetic low dimensional manifold: a bent helicoid-like manifold. The known

parameter for the helicoid is the oriented distance from the center line, and the ground

truth is the distance along the centerline of the helicoid. Isomap itself produces a bent

shape, where the first dimension is essentially the distance along the helicoid and the

second parameter is the absolute value of the distance to the center line (figure 4.14

upper right). This means that plotting the first Isomap parameter against the known

parameter yields a full parameterization of the manifold (figure 4.14 second row, left).

All of our methods except the windowed orthogonalization are able to preserve this

already good embedding. The windowed orthogonalization methods although still

fairly good, have introduced errors along the edges of the windows; thus, producing

worse results than the original Isomap parameterization they received as input.
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Figure 4.14: PUML methods applied to the bent helicoid-like manifold. Color in the
figures corresponds to ground truth position.
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Figure 4.15: PUML methods applied to a conical frustum dataset. Color in the figures
corresponds to ground truth position. Notice that several of our methods are able to
parameterize the frustum despite its cyclic nature.
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Figure 4.16: PUML methods applied to the kestrel. Color in the figures corresponds
to ground truth position.

132



www.manaraa.com

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●
●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●
●
●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●
●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●
●

●●
●
●

●●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●●
●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●
●●●●●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●
●
●●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●●
●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●
●

●●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●●
●
●

●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●
●
●●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●●●●
●
●
●

●

●

●

●
●
●●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
20

−
10

0
10

20
P

ar
am

et
er

 1

Known vs Isomap 1

●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●●

●
●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●
●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●●

●
●

●
●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●●
●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●●●
●
●
●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●●
●

●
●
●

●

●
●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●●
●

●

●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●
●●

●

●
●
●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●●●●

●

●●

●

●

●

●
●
●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●●●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
20

−
10

0
10

20
P

ar
am

et
er

 1

Local Subtraction

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●
●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●
●
●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●
●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●
●

●●
●
●

●●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●
●●
●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●
●●
●●●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●
●
●●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●
●

●
●●
●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●
●

●●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●●
●
●

●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●
●
●●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●●●●
●
●
●

●

●

●

●
●
●●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
20

−
10

0
10

20
P

ar
am

et
er

 1

Global Subtraction

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●●●

●
●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●●●
●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●●●●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●
●●●●
●

●
●●
●●●●●●●

●

●

●●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●
●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

G
ro

un
d 

Tr
ut

h

Ground Truth

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●
●

●

●

●

●
●
●

●

●

●

●

●
●

●
●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●
●
●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●●●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●
●
●

●●●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●
●
●

●●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●
●

●
●●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●
●
●
●●●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●●

●●
●
●●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●
●
●

●●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●
●●

●
●
●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●
●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●●
●●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
10

0
10

20
P

ar
am

et
er

 1

Trend Subtracted

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●
●

●
●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●
●
●

●

●
●●

●

●

●

●

●●●●

●

●

●

●

●

●●
●
●
●
●
●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●●
●
●

●
●●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●
●●●●●

●

●
●●
●●

●

●

●

●

●●
●

●

●

●●

●

●

●●●
●

●
●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●
●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●
●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●
●
●

●●

●●
●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●
●●
●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●●●
●
●
●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
15

−
10

−
5

0
5

10
15

P
ar

am
et

er
 1

Local Orthogonalization

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●
●

●●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●
●
●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●
●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●●
●
●

●●
●
●

●
●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●●●●
●
●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●
●
●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●
●

●●●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●
●

●●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●●
●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●
●
●●

●

●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●●●●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
30

−
20

−
10

0
10

20
P

ar
am

et
er

 1

Global Orthogonalization

●
●

●●
●

●

● ●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●
●

●
●●

●
●

●

●
●

●

● ●

●●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●●

●

●

●
●

●

●

●
● ●

●
● ●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

● ●●

●●

●
●

●

●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●●●

● ●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

● ● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●●
●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●
●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●●●

●●

●

●

●

●

●
●

●●

●
●

●●

●
●

●●

●

●
●

● ●

●

●
●●

●

●

●

●
●

●

●

●

●●●

●
●

● ●

●

●

●

●

●

●

●
●
●

●
●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

● ● ●●
●

● ●

●
●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●●
●

●●
● ●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
● ● ●●●● ●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●● ● ●
●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●
●
●
●

●●●

●

●
●●

●

●

●

●●

●
●
●

●

●

●

●

●

●
● ● ●●

●
●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●● ●

●
●

●●

●

●

●

●

●

●●●

●
●

●●

●

●
●

●●●
●

●●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●
● ● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●● ●● ● ●
●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●
●

●●
●

● ●●
●

●

●

●

●●

●

● ● ●

●

●

−20 −10 0 10 20

Parameter 1

−
10

0
10

20
P

ar
am

et
er

 2

Isomap

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●
●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●
●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●

●●
●
●

●●
●
●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●●●●
●
●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●
●

●●●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●●

●●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●●
●

●
●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●
●
●●

●

●
●
●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●●

●●●●●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●
●●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
30

−
20

−
10

0
10

20
P

ar
am

et
er

 1

Windowed Orthogonalization 6 Windows

●

●

●

●

●
●

●

●

●

●

●●
●●●
●●●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●
●●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●
●●●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●●

●
●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●
●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●
●

●
●●●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●
●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●
●●●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●
●
●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●
●●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●
●
●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●
●●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●
●

●
●

●
●●

●

●

●●●

●

●
●
●

●
●

●

●

●
●

●

●

●
●
●
●
●

●

●
●
●

●

●

●

●

●
●●

●

●●

●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●●
●

●●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●●
●●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
30

−
20

−
10

0
10

20
30

P
ar

am
et

er
 1

Windowed Orth 22 Windows (Order 3)

●

●

●●●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●
●●
●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●
●
●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●●
●
●

●●
●
●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●●●
●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●●●●
●
●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●
●

●●●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●●

●●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●●
●

●
●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●
●
●●

●

●
●
●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●●

●●●●●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●
●

●
●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●
●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

Known Parameter

−
30

−
20

−
10

0
10

20
P

ar
am

et
er

 1

Global Orthogonalization Order 3

Figure 4.17: PUML methods applied to the heart valve dataset. Color in the figures
corresponds to ground truth position.
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Figure 4.18: PUML methods applied to the Rabbit over π
2

radians. Color in the
figures corresponds to ground truth position.
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Global Orthogonalization Order 3

Figure 4.19: PUML methods applied to the Rabbit over all angles. Color in the
figures corresponds to ground truth position.
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For the conical frustum in figure 4.15 the known parameter is the angular position

of the point, while the ground truth value is the height of the point. The known

parameter in this case is cyclic. Due to the cyclic nature of the manifold, Isomap

produces a ring as the embedding. The first Isomap parameter plotted against the

known parameter produces a cosine like curve (second row, left). The distance sub-

traction methods and local and global orthogonalization methods produce slightly

better embeddings by spreading out the points, however, they are far from perfect,

as they also display cosine like shapes. The windowed orthogonalization method is

able to extract a good embedding by removing the cosine like component in each part

of the embedding. Trend subtraction also produces a similarly good embedding by

tracking and removing the cosine like component.

Figure 4.16 shows embeddings for the kestrel dataset. For the kestrel dataset, the

known parameter is the timestamp of the video frame, while the ground truth is the

position of the kestrel’s right wing. Isomap finds a signal very related to the ground

truth in its first parameter. However, most of the range of the first parameter of

Isomap is within the red range of the ground truth, which is a very small portion of

the ground truth’s range. In plotting the first Isomap parameter against the known

parameter, the problem becomes clear, there are very significant long term trends in

the data (second row, left). As with the other data sets, distance subtraction and

local and global orthogonalization produce very similar embeddings. Windowed or-

thogonalization produces different results depending on the number of windows and

whether higher order orthogonalization is used. Windowed orthogonalization with 6

windows has windows which are too large and contain most of the long term trends

within them. This causes little of the long term trend to be removed during or-

thogonalization. Third order windowed orthogonalization with 22 windows has small

enough windows to remove the long term trend. However, windowed orthogonal-

ization centers each window of the dataset around zero, causing red points in the

sections of the video with little variation to have the same value as blue points in

sections which have lots of variation. Trend subtracted PUML is able to extract a

very good signal which removes the long term trends, but does not center the parts of

the dataset with lots of variation around zero. This plot is very similar to the ground

truth values.
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Figure 4.17 shows results for the heart valve image datasets. In this dataset, the

known parameter is the timestamp of the video frame and the ground truth value

is the width of the heart valve. Isomap produces an embedding where the first pa-

rameter is fairly similar to the ground truth; however, as with the kestrel, there is

some drift due to long term trends which are visible when plotting the first Isomap

coordinate against the known parameter (second row, left). Local and global sub-

traction and local orthogonalization produce similar embeddings. In this case, global

orthogonalization, both first and third order, line up the colors, which correspond to

the ground truth values, effectively by raising the values in the second part of the

dataset. Windowed orthogonalization with 6 windows has a similar effect, but is not

any better, since the windows are too large to remove the long term trend which oc-

curs on a time scale smaller than the window size. Windowed orthogonalization with

22 windows has a small enough window size to remove the long term trends and lines

up the ground truth colors well. Trend subtracted PUML is again the most effective

method: producing a good embedding which only has problems separating cyan and

blue points.

Figure 4.18 shows embeddings for the rabbit over π
2

radians. The known parameter

for this datasets is the angle that the image was acquired from and the ground truth

is the diaphragm position of the rabbit. Because the main variation in the dataset

is due to changes in the viewing angle, the first Isomap coordinates are almost per-

fectly correlated with the known parameter. Local and global subtraction and local

orthogonalization are unable to extract a signal which is uncorrelated with the known

parameter. Global orthogonalization produces an embedding where the ground truth

parameter is visible, although it is still confounded with the known parameter. Third

order global orthogonalization produces a better embedding where much of the curve

has been removed and the ground truth coloring lines up better with the output pa-

rameter. Windowed orthogonalization produces an embedding with a jagged bottom

edge, where discontinuities appear at the edges of the windows. As with the other

datasets, trend subtracted PUML produces the best embedding and is very similar

to the ground truth values.

For the rabbit over all angles in figure 4.19, Isomap embeds the cyclic manifold in

a ring configuration reminiscent of the embedding of the frustum. Local and global

subtraction, and local and global orthogonalization are unable to extract a useful
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signal. Windowed orthogonalization with few windows simply produces a discontin-

uous set of curves, and when lots of windows and third order orthogonalization is

used only noise remains. However, trend subtracted PUML is able to produce a good

embedding of the dataset, where the only problem is a lack of separation between

cyan and blue points.

In summary, trend subtracted PUML is the most effective of our methods and pro-

duces useful results for both the synthetic datasets and image datasets. In general,

we are able to extract signals from each dataset which are very similar to the ground

truth values.

4.7.1 Finding the Kernel Width

For trend subtracted PUML, in addition to any free parameters of the manifold

learning algorithm, we must specify the correct kernel width for the preprocessing

step. A value that is too small will miss the secondary data trend, while one that is

too large will incorporate too much of the variation which is dependent on the known

parameter. For example in the rabbit data, the kernel width should be large enough

to encompass several breaths, but not so large as to incorporate too much variation

due to viewing angle.

To determine the optimal kernel width, we look at the correlation between the output

parameterization and the ground truth (figure 4.20(top)). On the x-axis we have

increasing sizes of kernel width. The value displayed on the x-axis k corresponds to

choosing a kernel width such that a weight of 5% of the maximum weight is placed on

the kth neighbor. On the y-axis the correlation between ground truth and the first

parameter using trend subtracted PUML with the specified kernel width is shown.

The red horizontal line shows the correlation between the ground truth and the first

parameter of standard Isomap.

Unfortunately, the top row of plots would not be available in an application setting

since the ground truth is not known, we therefore look at using the variance of the

output parameter as a method to set the kernel width. This value is plotted in the

bottom row of figure 4.20. In general, the variance increases with increasing kernel
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Figure 4.20: Top: The correlation between the parameterization and ground truth.
A red horizontal line is drawn at the correlation level between Isomap with no pre-
processing and ground truth. This information requires knowing the ground truth,
which is unavailable in an application setting. Bottom: Variance of the output pa-
rameterization plotted against kernel widths. The kernel width is set to a value such
that the nth nearest neighbor has a kernel weight of 5%. The knee in these plots
generally corresponds to a high correlation to ground truth.
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widths, since less of the short term trends are removed with larger kernel widths. We

observe that the knee in the output variance plots generally corresponds to a high

value of correlation between the output and ground truth. At this kernel width the

small scale variance, which is independent of known parameter, is not removed, but

the long scale variance, which is dependent on known parameter, is removed.

We consider in more detail each dataset. The first column of figure 4.20 shows results

for the heart-valve ultrasound video. This is the simplest of the image datasets, since

the dominant visible variation in the scene is the heart valve, and plain Isomap applied

directly to the image data correlates well (almost 0.8) with the ground truth measure

of the valve opening. The viewpoint drift of the heart is very slow, so using a large

kernel width is optimal. The knee of the standard deviation of the output parameter

(bottom row, column 1) comes at a rather large value (32). The corresponding value

in the correlation image shows that the correlation between the output parameter at

this stage and ground truth is quite high, and is above that of standard Isomap.

The second column of figure 4.20 shows results for the kestrel video. Here plain Isomap

gives a parameterization which is less correlated (0.65) with the wing flap parameter

of interest, because the bird has substantial drift and pose variations through the

scene. When the kernel size is chosen around the knee in the standard deviation plot,

so that 15-30 neighbors are included in the trend subtraction, the parameterization

improves to above 0.8 correlation.

The final two columns of figure 4.20 show results for the partial and full cycle rabbit

CT. The parameter of interest is the breathing, but because dramatic image changes

are caused by changing the projection angle, plain Isomap is much less correlated.

This is especially true over the full cycle (last column), since Isomap is unable to

parameterize cyclic variation. The correlation between the trend-subtracted param-

eterization and the ground truth is maximal when the kernel size includes about 7-9

frames as neighbors. This kernel size includes several breaths: performance declines

slowly as the kernel size increases and more of the viewpoint variation is incorporated.

Again, the knee of the standard deviation of the output parameter is located at a

point where the output is highly correlated to the ground truth.

We are able to automatically choose a good kernel width for each of the data sets.

However, for the varied example data we have considered, trend subtracted PUML
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provides good results for a large range of kernel widths, providing evidence that

selecting an optimal kernel width is not a delicate process.

4.7.2 Correlation Images

To better understand the image based datasets we look at the correlations between our

results and the signal observed at each pixel of the image through time. The intensity

of each pixel in figure 4.21 displays the magnitude of the correlation between the signal

at that pixel (throughout the video sequence) and various parameters. Darker pixels

are more correlated. The first row shows correlation with ground truth, the second

with trend subtracted PUML, the third with the first Isomap parameter, the fourth

with the second Isomap parameter, and the fifth with the known parameter. The

width of the kernel used in trend subtracted PUML is that determined by the knee

in figure 4.20(bottom). In general, the images showing correlation with ground truth

are very similar to those with trend subtracted PUML.

We consider in more detail each dataset. For the heart valve, the pixels most corre-

lated with ground truth are in the center and along the outside area of the valve, where

the motion from opening and closing is most present. This is also the area which is

most correlated with the trend subtracted PUML signal, and the first Isomap param-

eter. The location of pixels correlated with the second Isomap parameter and with

the known parameter do not show any clear trend.

For the kestrel, the wing on the left side of the image is more highly correlated

with the ground truth values, since the position of that wing was used to ground

truth the dataset. The trend subtracted PUML coordinates are also correlated with

the wing positions, although less of the wing in the left side of the image is highly

correlated. The first Isomap coordinate seems to be correlated with an upward shift

of the entire body of the kestrel. The second Isomap coordinate looks like a Discrete

Cosine Transform (DCT) component of the same shift. The known parameter is most

correlated with a minuscule shift in the beak and head position, which is the greatest

long term trend in the video.
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Correlation with Ground Truth

Correlation with Trend Subtracted PUML Results

Correlation with Isomap Parameter 1

Correlation with Isomap Parameter 2

Correlation with Known Parameter

Heart Valve Kestrel Rabbit π
2

Angles Rabbit all Angles

Figure 4.21: The correlation between pixel locations and from top to bottom: ground
truth, first output parameter in trend subtracted PUML, Isomap parameter 1, Isomap
parameter 2, and known parameter.
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For the rabbit, both the ground truth and trend subtracted PUML both highlight the

diaphragm. Isomap component 1 and 2 mainly highlight the rotation of the rabbit;

however, the diaphragm is highlighted a little in the second Isomap parameter. The

known parameter is strongly correlated with areas of the image which change the

most during rotation: the right (and some of the left) over a quarter turn of angles

and the left over all angles.

4.8 Conclusion

We have posed the problem of Partially Unsupervised Manifold Learning (PUML) in

which an embedding of a dataset is found which preserves the structure within the

dataset while ensuring that the output parameterization is independent of a given

known parameter. We have developed different methods which modify data struc-

tures at various stages of the Isomap algorithm to produce a new PUML algorithm.

Our methods have included, modifying the pairwise distance matrix, using orthogo-

nalization to ensure output parameterizations are uncorrelated with the known pa-

rameter, and removing trends in the dataset found through kernel regression. Using

these methods we are able to produce improved parameterizations of a dataset given

extra information given in the form of a known parameter.
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Chapter 5

Conclusion

Finding and characterizing motion patterns and deformation in video is a key to

applications ranging from surveillance to medical imaging. In this dissertation we

have explored approaches to this problem where the camera is stationary. Because

the camera is stationary, it is easier to collect statistics of the observed motion. We

characterized motion at the local level: defining motion patterns for each pixel and

building this into an understanding of the scene. And, we looked at motion at the

global level: characterizing variations over time due to patient breathing, and object

movement and deformation. We demonstrate the value of these two approaches by

delving deeply into 3 problem domains. For these domains we extended the bound-

aries of what is possible for fully automated video understanding.

When observing a traffic scene, we developed energy functions to create vector fields

from spatio-temporal derivative structure tensors. However, more importantly, we

are able to pass the energy functions and the structure tensors to a snake applica-

tion which can use the energy functions directly. The allows us to robustly create

parameterizations of the direction, speed, and width of roads.

In medical imaging, our analysis of motion has hinged on two problems. First, how

can the breath phase of a data acquisition automatically be determined? Once the

breath phase has been found, how can the entire dataset be synthesized into a coher-

ent model of how the lung moves during breathing? The first question we answered by

parameterizing each local area of the lung independently and then aligning each coor-

dinate system to create a consistent breath measure value for every data acquisition.

The second question we answered by constructing a motion model based on a single

reference volume and a deformation map parameterized by the breath phase. This
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model is applicable to more than just lung models, and even generalizes to multiple

causes of variation, such as breathing and heartbeat. These are powerful methods for

understanding the motion within medical datasets, which can be used for radiation

treatment planning and other applications.

Our last problem domain was more theoretical in nature. In Partially Unsupervised

Manifold Learning (PUML), a known parameter related to the variation within a

dataset is given a priori. The task is to parameterize the variation in the dataset

which is not accounted for by the known parameter. We are able to analyze videos

and automatically parameterize short term variations while ignoring long term trends

in the data. This allows a more coherent analysis of video data which does not suffer

from distracting variation within the scene. Additionally, we are able to apply PUML

methods to datasets where a known cyclic parameter is present, such as in medical

images from a Conebeam CT scanner.

Collectively, these 3 chapters highlight the power of continuing to view the same scene

and characterizing the sources of variation within that scene. Automated methods for

this will be increasingly important in surveillance and medical imaging as the amount

of imagery captured continues to grow much faster than the available manpower to

evaluate it.
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Neighbors in High-Dimensional Data: The Emergence and Influence of Hubs.
In ICML, June 2009.

[72] Marie Rochery, Ian H. Jermyn, and Josiane Zerubia. Higher Order Active
Contours. IJCV, 69(1):27–42, 2006.

[73] Sam T Roweis and Lawrence K Saul. Nonlinear Dimensionality Reduction by
Locally Linear Embedding. Science, 290(5500):2323–2326, December 2000.

[74] Sam T Roweis, Lawrence K Saul, and Geoffrey E Hinton. Global Coordination
of Local Linear Models. In NIPS, 2001.

[75] David Sarrut, Vlad Boldea, Serge Miguet, and Chantal Ginestet. Simulation
of Four-Dimensional CT Images From Deformable Registration Between Inhale
and Exhale Breath-hold CT Scans. Medical Physics, 33(3):605–617, March
2006.

[76] Ryan Schmidt, Cindy Grimm, and Brian Wyvill. Interactive Decal Compositing
with Discrete Exponential Maps. In SIGGRAPH, 2006.

151



www.manaraa.com
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